# Innovation In Wireless

Markus Hofmann Head of Bell Labs Research Alcatel-Lucent

http://www.mhof.com/









# **Challenges**

# Opportunities for True Innovation



#### **Trends**

## Mastering the Challenges



#### **Trends**

## Mastering the Challenges



# **Is There A Better Way?**

#### Small Cells to the Rescue





# **lightRadio™ Cube**

From Wooden Block to Reality







Slide 9 - Markus Hofmann

# The (R)Evolution Continues

#### **New Cubes**



#### **Dual Band Cube**

- Use same footprint, power, and backhaul to support two bands.
- Ideal for 3G AND 4G together.
- Solution for 2.1 GHz and 2.6GHz simultaneously



#### **High Power Cube**

- New thermal management solutions allow for high power.
- High power allows for coverage of larger areas as well as a component in macrocellular arrays.
- New Doherty amplification techniques are employed with end stage efficiencies in excess of 50%.



#### **Cabled Cube**

- Ethernet or CPRI cabled solution (optical or copper) allows great flexibility.
- Ideal for indoor deployments.
- Power over Ethernet can drastically reduce installation costs.
- Cabled flexibility offers new arrangements of cubes into unique arrays.



#### **Shared Cube**

- Proliferation of small cells outdoors as well as indoors will be expensive to provision.
- For many locations (esp. indoors) it may be expedient to share installation and infrastructure
- Wideband cube covers four bands/providers between 700MHz and 2.7GHz
- Backhaul to the baseband unit is over high speed CPRI (CPRI7, 9.8 Gb/s) or 10 gigabit ethernet (fiber or copper).



# **Improving Energy Efficiency**

Small Cells – A Piece in the Puzzle





#### **GreenTouch Consortium**

Increasing Network Efficiency by a Factor of 1000

- Global research consortium representing industry, government, and academic organizations
- Launched in May 2010
- 55 member organization
- 300 individual participants from 19 countries
- 25+ projects across wireless, wireline, routing, networking and optical transmission
- http://www.greentouch.org/



Slide 12 - Markus Hofmann

#### **Trends**

## Mastering the Challenges



Slide 13 - Markus Hofmann

## **Clouds Solve Real Problems**

There is a Reason for the Hype





# **Today's Clouds Solve Real Problems**

... But Only Certain Kinds



- Transaction oriented
- Stateless
- Relaxed time constraints



- Session oriented
- Stateful
- Stricter time constraints



# **Example: Problems With Stateful Applications**

Today's Clouds are Optimized for the Average, Accepting Huge Outliers





# Is it possible?

# Cloudifying the Wireless Access Infrastructure









#### From IT Cloud to Networked Cloud

Moving from Centralized Clouds to Highly Distributed Clouds





## From IT Cloud to Networked Cloud

Taking the Network into Account – Why We need an Integrated Approach

Today's ecosystems set forth players at various layers, e.g.

- Network providers,
- Overlay providers,
- Application and Content Providers.

Players at various layers often have conflicting objectives, e.g.

- Network providers may aim to balance network load, while
- Application-specific provider may aim to reduce latency.

Pursuing conflicting objectives will lead to instable networks, impairing all

=> We need an integrated approach!









## From IT Cloud to Networked Cloud

The Benefits of Cross-Layer Awareness

Our Approach: Apply game theory to the layer interaction problem.

- Leader makes route adjustments according to a defined strategy.
- Other layer reacts to this change as a selfish follower according to its objectives.
- Leader acts after predicting/counteracting the subsequent reaction of the follower.

We have developed and evaluated several strategies that

- Enable the leader to obtain the best possible performance, while
- Steering the system towards a stable state.







# **Networked Cloud – Differentiating Features**

Benefits and Challenges



| Feature of Networked<br>Cloud               | Benefit for customer                        | Provisioning challenge                                      |
|---------------------------------------------|---------------------------------------------|-------------------------------------------------------------|
| Large number of smaller data centers (DC)   | More choices to distribute and grow service | Produce best placement with unknown future requests         |
| Service provider controlled interconnection | Integrated one stop solution for service    | Be flexible in accommodating different resource constraints |
| Access to network routing                   | Load balanced service                       | Dynamic service routing                                     |
| DC close to user                            | Low latency service                         | Handle two conflicting                                      |
| DC far from user                            | Built in disaster recovery                  | goals in placement                                          |

## **Why Resource Placement Matters**

#### Finding the right Location provides Benefits







#### What It Looks Like

Developing an Industry Standard - Application-Layer Traffic Optimization



| Server   | #<br>Tests<br>Passed | #<br>Tests<br>Failed | # Tests Not Supported |
|----------|----------------------|----------------------|-----------------------|
| BL/ALU   | 19                   | 1                    | 0                     |
| Server 2 | 19                   | 0                    | 1                     |
| Server 3 | 18                   | 1                    | 1                     |
| Server 4 | 4                    | 0                    | 16                    |
| Server 5 | 6                    | 3                    | 11                    |

#### **Bell Labs contributions in IETF**

- Helped develop ALTO WG in IETF
- Co-chair of ALTO WG and IRTF P2P RG
- Developing BoF for ALTO extensions.



# **Looking Ahead**

Innovation in Wireless – and Beyond...

#### Future wireless networks will:

- Efficiently support diverse data types,
- Provide a service rather than a bit rate,
- Embrace all of the standards: from Bluetooth and WLAN, CDMA, W-CDMA, LTE and new ones as well,
- Possibly separate signaling and data paths,

Cloud processing will dominate in the network.

Full convergence of wireless and wireline solutions





**Industrial Research** 

Fundamental & Applied

Global

Highly Cited

**Integrated** 

Near & Longer Term

Preeminent

**Meanplex Challenges** 

Cross-Disciplined

Collaborations

Holistic