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Abstract
Two major challenges for the operation of mobile agent
systems in a global networking environment are the tasks
of providing an efficient infrastructure for remote inter-
agent communication and of locating agents during their
remote execution. The potential partners of a mobile
agent form an overwhelmingly large population that is
constantly fluctuating as individual agents move between
different  locations in  pursuit of their tasks.
Communication patterns range from simple two-party
exchanges to long lasting coordination cycles among
sizable agent groups. While adequate for the simpler
cases, conventional messaging and directory mechanisms
fail to scale up to the requirements of ensuring
consistency and mutual location among many highly
agile parties as demanded by more complex agent
configurations. In this paper we present an approach to
the remote coordination of dynamic agent groups based
on the IP multicast model. By dynamically associating a
multicast address with an agent group we gain a cost-
efficient means of communication that can be easily
adapted to dynamic changes in location and membership.

The mobile agents paradigm of distributed processing
relies on small software units, named mobile agents, to
traverse global data networks and meet with information
providers or other agents at certain locations, often called
agent meeting points (AMPs). A mobile agent
encapsulates a set of application specific code and state
variables that enable it to carry out an assigned task (e.g.
preselection of data from a database) autonomously
through local communication with the other entities
present at a remote agent meeting point. Communication
over data networks is thus reduced mainly to the travels of
mobile agents between different agent meeting points.
Mobile agents are attractive whenever it is desirable to
minimize transfer volume and message exchanges for a
data-intensive distributed application [2].

While the essence of the mobile agents paradigm
consists in avoiding costly network transfers it is often
desirable to be able to exchange small control messages

with an agent to direct its operation, and agents
cooperating remotely need to exchange status reports with
their peers. One of the major challenges for mobile agent
computing is the task of locating and communicating with
agents in the field. The conditions found in popular
visions of mobile agent systems (e.g. [19]) assume a
numerous population of highly agile entities roaming all
over the world and are thus especially ill suited for
location strategies employed in present day distributed
middleware (see [15]). The problem deteriorates further
when communication is not restricted to two partners but
includes a large community of agents that wish to
exchange data with several partners at the same time.
Typical applications of this scenario are found in the field
of agent coordination scenarios in DAI and parallel
approaches to highly data intensive tasks such as agent
based electronic library access, data mining and the
electronic marketplace.

In this paper we propose a solution to the location and
communication problem in mobile agent systems through
a very direct use of the [P multicast technology. We
capture the inherent agility of mobile agents in a scheme
of dynamically adapted multicast groups and thereby
facilitate the design of an efficient location service under
a restricted visibility assumption at the level of agent
meeting points.

IP multicasting technology has demonstrated its
efficiency for wide area multiparty communication and is
thus a suitable basis for a communications infrastructure.
However, the characteristics of mobile agents require
some features, such as reliable delivery and high
dynamics in topology changes, that are not met by IP
multicast in its simple form. This added functionality has
to be provided by extensions which must be carefully
chosen to yield an efficient overall solution.

The argumentation of this paper is arranged as follows:
In chapters 1 and 2 we give a short introduction into the
principles of mobile agent computing and the IP
multicasting technology, respectively. Chapter 3 details
the practical application of IP multicast as a communi-
cations infrastructure for mobile agents. In chapter 4 we
provide a close analysis of the special demands placed on
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the transport system by mobile agents and show how the
simple multicast model must be extended to reach the
desired efficiency. We illustrate our approach with a
sample application from the electronic marketplace in
chapter 5. We conclude in chapter 6 with a discussion of
the effects of our approach on other components of
mobile agent computing and give an outlook to further
research directions.

1. Mobile agents

The mobile agents paradigm is a recent approach to the
development of distributed applications. It has its origins
in the concept of remote program evaluation [18] and
builds on the areas of distributed object oriented systems
(e.g. [10]), user interface design [4] and models of the
artificial intelligence community [20]. From the first it
inherits the attribute of mobility, from the second the
attribute of asynchronicity, and from the last the attribute
of autonomy. In the technical view a mobile agent
comprises the encapsulation of an application's code, data
and control flow into a single compound. With the
assistance of a suitable runtime environment, an agent
running at one computing node can suspend its execution,
be transferred across a network link to a different
computing node, and seamlessly continue its task in the
new location at the point where it left off [2]. Containing
its own flow of control means for the agent that it can
perform internal computations autonomously and
explicitly interface with external data sources. It is thereby
possible for the agent to keep a tight control over its
internal data structures. Since a mobile agent can carry a
computation across several locations, it is capable of
solving its task asynchronously of the entity that started
the agent. These three attributes distinguish the mobile
agent from the several other agent concepts used in the
artificial intelligence, user interface, and systems
management contexts (see [14], [16]).

The growing interest for mobile agents in the
distributed systems community arises from the fact that
agents appear well suited as a cost efficient means for
distributed information gathering and processing tasks in
environments with low available bandwidth or unreliable
network connections such as mobile computing and wide
area networking. Moving an application across a network
to the location of relevant data — often referred to as code
shipping — can result in considerable savings of transfer
volume compared to the data shipping approach
predominantly employed in today’s network-related
applications from networked database systems to the
world wide web. A mobile agent can also be used to
asynchronously monitor remote events and data without
the need for repeated network accesses [2]. In order to
achieve their primary objective, the reduction of network

traffic for distributed computations, mobile agents are
designed to perform the majority of their interactions with
service providers and other agents inside their local AMP
environment. There is often an additional message-based
mechanism for low bandwidth communication with
remote peers, whenever an agent cannot solve its task
entirely autonomously, to avoid the overhead of
transferring the agent for simple status reports.

While there are many other questions still to be
answered for a comprehensive cost model of mobile agent
computing, we shall focus on data volume transferred
over network links, which is related to both transfer delay
and consumed bandwidth, as the basis for our further
argumentation and show how it can be improved by the
use of a multicasting communication infrastructure.

2. Fundamentals of IP multicast

Existing mobile agent systems generally like [12] or
[5] forward messages to multiple receivers by repeatedly
transmitting them using successive point-to-point
transfers. The data source transmits various copies of one
and the same data unit, each of them addressed to a
different receiver. This approach has two major
drawbacks. Firstly, the data source needs to know the
identity and location of each receiver. However, mobile
agents may change their location at any time, thus
generating the need for an explicit location mechanism.
Secondly, the transmission of one copy per receiver does
not scale well with the overall number of recipients.
Network load is increased with the group size.
Broadcasting, on the other hand, might be a good solution
in local environments. However, it is obviously not
practicable in wide-area networks.

Rather than broadcasting information or using multiple
point-to-point transfers, a much better approach is to
make use of the forthcoming multicast technology.
Multicast refers to a communication pattern whereby a
single sender transmits data to multiple receivers. The
receivers form a multicast group, which is assigned a
certain multicast address. Forwarding messages to a
multicast group is optimized by delaying the replication of
a data packet until it has to traverse different links.
Therefore, routers and switches have to incorporate group
management facilities as well as mechanisms to establish
and maintain multicast routing trees. Fortunately, the
current Internet already provides support for multicast
transfer. The Multicast Backbone (MBone) [11] forms an
overlay network on top of today’s Internet providing a
multicast facility to the Internet community. It makes use
of Steve Deering’s IP multicast extensions [3]. The
MBone comprises only a small fraction of currently
installed Internet routers and uses so called funnels to link
multicast-capable islands together. These tunnels



presently need to be manually configured by system
administrators. They are used to forward multicast packets
through non-multicast routers by encapsulating them
inside regular IP packets. The MBone has been
established to gain practical experience with the new
multicast technology. In the near future, it is expected that
most of the routers will be multicast-capable and that the
MBone will encompass the whole Internet.

According to the group delivery model of IP multicast,
data sources simply send a single copy of multicast
messages to the group’s multicast address. Senders do not
need to have any advance knowledge of the group
membership. It is the task of IP multicast to forward
messages to all the current group members. To receive
any multicast data, receivers simply announce their
interest in messages destined to a certain multicast group.
They do not need to have any knowledge of group
membership or active senders. In addition, hosts may join
and leave multicast communication at any time without
affecting the data transmission to any other member.

The Internet Group Management Protocol (IGMP)
provides mechanisms for hosts to announce and to
reannounce their membership in certain multicast groups.
Local multicast routers listen to these membership reports
to track the group membership in their subnets. Based on
the obtained information, they decide whether to forward
multicast messages addressed to specific groups.
However, these mechanisms are transparent to the service
user. Application programmers simply use an extended
socket interface to send or receive multicast data. Group
membership is announced by setting the appropriate
socket options. Therefore, writing [P multicast
applications is no more complicated than using traditional
point-to-point communication via a socket interface.

3. Applying IP multicast to mobile agent
systems

Communication in mobile agent computing occurs in
two shapes: Firstly, mobile agents themselves are
transported between different hosting computers in a
process commonly known as agent migration, and
secondly agents may enter into communication with
remote entities in addition to their interactions with
resources local to their present place. Mechanisms to
support both types of communication have been
incorporated in all present agent architectures (e.g. [1],
[12], [9], [19]). So far, emphasis has been put on the
technical realization of code shipping and the
establishment of security mechanisms for agent transfer
and communication. The transfer of the involved raw data
is handled by conventional transport connections between
the different agent runtime environments. While this
approach is sufficient for prototype scenarios dealing with

only a small number of agents it quickly becomes a
problem when faced with real world conditions.

Application of mobile agents in the electronic
marketplace (an example is discussed in detail in chapter
5) or distributed simulations [13] can easily amount to a
community of thousands of agents distributed over
continental distances. New agents may be introduced into
the system at any time through the process of spawning or
cloning subagents which allows the creation of distributed
agent teams. In this kind of environment both modes of
communication, the migration of agents themselves
through multiple-degree cloning and the sending of
messages between teams of agents, involves several
parties at once instead of just two partners. Studies in the
coordination of multiple agents carried out in distributed
artificial intelligence research like [17] assume broadcast-
type communication facilities in the shape of a shared
blackboard. At the same time the large-scale employment
of mobile agents in practically relevant applications will
bring about a closer control of the resources consumed by
mobile agents in their remote host environments. Here, an
agent creator will want to keep track of the costs
accumulated by his wayward agents and occasionally stop
an agent whose task has become obsolete. One of the
keystones for the practical suitability of mobile agents for
real-world applications is therefore an efficient service for
locating and communicating with mobile agents in a huge
and dynamically varying population.

In present approaches different agent runtime
environments are typically connected by unicasting links
and provide a service component at the application level
to keep track of locations of the active mobile agents.
Inherently parallel communication patterns like cloning
have to be serialized and multiplexed onto the links. The
preservation of consistent location information after an
agent migration or cloning requires an application-level
protocol between AMPs and results in several message
exchanges per movement or location request. By analogy
to the multiparty communication problem on the network
layer it is obvious that this approach does not scale well
with the large of the envisioned scenarios of mobile agent
applications. Nor are the well known application-level
location mechanisms for mobile objects such as forward
pointers, home nodes or broadcast particularly suited to
the dynamism of mobile agents environments.

3.1. Technical realization

We observe that the principle of autonomous task
solution mentioned as a key classifying attribute of mobile
agents has the effect that a potential for remote
communication and an interest in the present location of
any particular agent does not extend to the entire cosmos
of a worldwide mobile agent community. Contrarily,



knowledge of the existence and location of a specific
mobile agent and the need to exchange coordination
messages remains in the scope of a group of mutually
acquainted entities, e.g. all agents working on the same
top-level task or all agents belonging to the same user. A
surprising solution to both the problem of multiparty
communication and of locating dynamically moving
entities under this restricted visibility assumption is found
in the application of the very same mechanism chosen for
multiparty streaming applications below the application
protocol layers: the [P multicasting technology.

For our further elaboration we define the concept of a
mobile agent communication context. This term is to
stand for a group of agents and the messages exchanged
between them in pursuit of a common well defined task as
in the anonymous group communication variant in [1]. A
communication context may involve a number of agents
varying over time, extend in duration from a single
message exchange to a multi-message and long-lasting
conversation, and the type of messages may range over
several magnitudes from small status reports of only a few
bytes to encapsulated migrating agents and large amounts
of accumulated result data. For each communication
context contained in an agent-based computation we
assign an [P multicast group if the number of agents that
are to receive messages under this context is greater than a
certain threshold. AIl network transfers in a
communication context are sent to the assigned multicast
group and equally delivered to all context members.

We will denote the underlying multicast group of a
communication context as the confext carrier because it
closely reflects the topological state of a communication
context and its dynamic evolution. For any
communication subcontext, an additional multicast group
will be created either through initialization by the original
context creator or dynamically at runtime by one of the
group members, whereafter it can be propagated over the
global context multicast group.

A context carrier can be used to improve the
communication for arbitrary groups of agents. When used
for the temporary collaboration of otherwise unrelated
agents the group needs a previous agreement on the ID of
the underlying multicast group. An especially efficient
case arises for feams of multiply cloned agents that are
simultaneously created by a single parent.

The setup of a context carrier requires that an initiator
agent acquires an unused address for an IP multicast
group. Currently, no mechanism has been defined for IP
multicast to dynamically assign group addresses. Instead,
today’s MBone Tools use a program called Session
Directory (SDR) [11] to ensure uniqueness of randomly
chosen multicast address at an application level. We have
implemented a client/server based variant of this tool,
which allows programs to get an unused group address via
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Figure 1: Establishment of the context carrier

Remote Procedure Call (RPC) and ensures uniqueness of
the used address. After getting an group address, the
initiator agent sends a (very small) setup packet by
conventional unicast to each AMP that carries an agent
group member (or is to be the target of a clone agent) to
spread knowledge of the chosen multicast address. For the
clone team case this message also contains information
specific to the individual clones such as agent ID and
initialization state. The target sites then join the advertised
multicast group and wait for incoming messages (see
figure 1) thus completing the context carrier setup. At this
point, a clone parent, which itself has not joined the
multicast group, may send a single copy of packaged
agent code as the first multicast message, and the
transport system efficiently handles the delivery to all of
the registered target sites (see figure 2 below).

The established multicast group can henceforth be used
to relay any messages of global scope among the
communication context. For subsequent migration of
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Figure 2: Clone team setup via context carrier
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Figure 3: Transparent location of moved agents

context members the multicast setup is adapted by
deregistering the old site and adding the new site to the
multicast group (shown below in figure 3). New agents
may be dynamically spawned and added to the group and
group members can resign at any time, causing the
multicast group to be updated with join and leave events.

A special case arises whenever two members of a
communication context reside on the same AMP. While a
doubled multicast join is simply ignored by the
networking infrastructure, a premature /eave operation
issued by the AMP on departure of the first agent leaves
the remaining agent disconnected from the group. The
AMP is thus required to keep a counter per context and
will only issue a multicast leave operation when all agents
of a context have departed.

A reliable delivery mechanism is required to ensure
that the migrating agents reach any target sites that
received the setup notification but were late to join the
multicast group, entering only after the migration message
had been delivered to all receivers.

It is important to note that at the application level
changes in the setup of the context carrier through
migration of participating agents involves only local
interactions with the transport infrastructure. Specifically,
only the origin and destination AMPs of a migration leave
and join, respectively, the context carrier. Full locatability
of the moved agent is provided in an entirely transparent
way by the multicast routing infrastructure. This is unlike
conventional locating schemes where remote home
pointers or reference chains have to be updated to reflect
the occurred migration.

3.2. Changes in the AMP interface

The implementation of all communication functionality
in our architectural framework is located in an AMP

service component named the communication service.
Agents access this service through an interface that offers
methods for migrating or cloning an agent and sending
arbitrary messages to other agents among a set of
acquaintances of the sending agent. The acquaintance set
in our approach contains individual agents, such as the
creator of an agent group, as well as agent groups,
represented by their communication context. The mapping
between agent or group IDs and their corresponding
unicast or multicast addresses and the actual transfer of a
message is encapsulated in the communication service as
are join- and leave-operations for the AMPs at both ends
of an agent migration. Thus, the individual agent does not
need to know any details about the shape of an acquainted
agent group and stays entirely unconcerned with the
joining or leaving of members. Allowing set-valued
acquaintances and managing the necessary bookkeeping
for dynamic groups in the AMP infrastructure extends the
(single-valued) options offered in existing systems and
relieves the agent developer of the burden of organizing
multi-party communication by himself. The clone
operation used to spawn one or several copies of an agent
comes in two flavors. By default, new agents are added to
the enclosing communication context. Alternatively, it is
possible to create a new communication context for the
clone team enabling the user to form a hierarchy of
subcontexts that limit multicast exchanges to precisely the
group communication pattern desired for the application.

3.3. Advantages over conventional approaches

The advantage attainable over the conventional
approach of application-level controlled communication
via unicast transport links is manifested in two areas.

Firstly, the accumulated data volume transferred in a
single multicast is almost always significantly lower than
that of a matching number of unicast transfers. Teams of
clone agents are to the largest degree made up of identical
code and initialization data (with differences e.g. in the
individual IDs and itineraries) and are therefore suitable
for our multicast transport scheme. The volume generated
in agent migrations, one of the major remaining cost
factors for mobile agents on the communication side, can
thus be reduced at least for the initial cloning phase.

Secondly, the task of locating the addressees of a
communication event is transparently handled by the
multicast protocol on the networking layer. We argue that
the network layer is the appropriate choice to carry out
routing and locating functionality because the required
protocol mechanisms are already there and have
undergone considerable development. The functions for
agent location performed at the application level inside
the AMPs are greatly reduced in our approach and lead to
a simplification of the overall AMP architecture.



3.4. Required extensions to the simple IP
multicast

While the advantages to be gained by the direct use of
multicast technology are promising, the discussion so far
has not considered all aspects of the technical realization.
First and foremost, the simple IP multicast service does
not provide guarantees for the reliable delivery of a
packet to any of the receivers which is an absolute
requirement for agent communication.

The literature mentions several extensions that add
reliability to the multicast service. The communication
patterns generated by a context of agents are, however,
fundamentally different from those generally assumed as
the basis for reliable multicast protocols in a number of
ways: traffic is highly bursty instead of streaming,
receivers may move during the existence of the context,
data volumes are comparatively small. The ratio of the
topology change rate over the communication event rate
may be high, which means that an agent may choose to
migrate between two packets of a conversation and expect
to be reached by all packets at its new location. With
respect to organization, the member AMPs of a context
carrier do not join the group out of their own choice but
react to the request of a peer AMP (the origin of an
immigrating agent).

This set of constraints necessitates a careful analysis of
the employed extensions for reliable delivery to ensure
that the profit gained in the use of multicast is not lost
through carelessness at the other end.

4. Analysis of multicast-based
communication

IP multicast provides efficient and scaleable routing of
data packets to multiple receivers. However, the
unreliable bearer service provided by IP does not fit the
requirements of mobile agent systems. Remote inter-agent
communication relies on reliable and error-free data
delivery. Measurements have shown that packet losses in
the current MBone are significant. The data sets collected
in [21] state that in several scenarios almost 70% of
transmitted packets were not correctly received by at least
one receiver. This illustrates the need for efficient and
powerful error correction schemes.

When designing reliable multicast protocols for large
scale mobile agent systems, scalability becomes a key
issue. Several hundred agents may be involved in a single
multicast communication. In addition, mobile agents may
be spread all over the world. As the size and the
geographic span of agent groups increase, efficient
connection management schemes become ever more
essential. Some kind of interaction between sender and
receivers is required to ensure correct data delivery.

Neither system has enough information to control data
transfer on its own. The provision of reliable data transfer
is based on a comparison between sent and received data.
The transmitter has knowledge about which data units
have been sent and the receivers about which data units
have been received correctly. Therefore, the provision of
a reliable communication service requires the transmis-
sion of receiver status back to the sender or vice versa.

Another issue of high importance is to identify error
correction schemes suitable to provide reliable multicast
delivery. Common protocols use Go-Back-N or selective
repeat to retransmit lost and corrupted data. Receivers
request missed data units directly from the transmitter
without any consideration of network topology and
current network load. In the case of group
communication, it is also possible to exchange data with
neighboring receivers. It is preferable to request lost and
corrupted data from a group member placed next to the
host which is missing some information. An optimal error
correction scheme would stimulate retransmissions of
missed data units by the receiver located closest to the
failing host. This would minimize transfer delay and
network load. Studies of packet loss correlation in the
current MBone [21] show that packet loss is more likely
to occur on the path between the multicast backbone and
the local host rather than on the backbone links of the
multicast tree. The measurements also show that, on
average, there is little pair-wise spatially associated loss in
the MBone. Therefore, the probability that a receiver is
able to obtain a missed data unit from a nearby group
member is quite high.

4.1. LGMP - A scalable reliable multicast
protocol

The described problems and the characteristics of the
MBone have strongly influenced the design and the
development of a novel multicast protocol for mobile
agent systems, which is called Local Group based
Multicast Protocol (LGMP). It is based on the Local
Group Concept presented in [7]. The mechanisms of
LGMP are designed to support reliable data transfer on
top of unreliable IP multicast. The communication service
provided by LGMP is perfectly in conformity with the
requirements of mobile agent systems. A comparison with
related work can be found in [6].

The basic aim of LGMP is to distribute the burden of
acknowledgment handling and error recovery among all
the members of a global multicast group. LGMP divides
global communication groups into so-called Local Groups
to improve scalability of point-to-multipoint services. The
receivers which belong to the same Local Group should
be located in close vicinity. Different application-specific
metrics are supported to establish a hierarchy of Local



Groups. In each subgroup a Group Controller (GC) is
responsible for processing status information from the
assigned receivers. The integration of acknowledgment
processing capabilities into Group Controllers reduces the
implosion problem. A GC evaluates control messages
from all the members of its subgroup and forwards them
to the multicast sender or a higher-level Group Controller
in a single composite control unit. This concerns error
reports as well as messages to control data flow. Parallel
processing of status reports and their combination into a
single message per Local Group relieves the multicast
sender by reducing the number of control units to be
processed at the transmitter.

Group Controllers also support the coordination of
local retransmissions. In principle, any group member that
has correctly received a certain data unit is able to
perform retransmissions. It is not just the original sender
which may retransmit lost data units. LGC recovers
packet errors inside Local Groups first. A Group
Controller requests missing data units from the sender or a
higher-level GC only if not a single member of its
subgroup has received the missing data unit correctly.
However, retransmissions performed by regular receivers
have to be coordinated in some way. Redundant
retransmissions should be avoided and an appropriate
group member should perform the retransmission. The
receivers have to come to an agreement on which of them
is performing a requested retransmission. They coordinate
local recovery from data loss to avoid expensive
retransmissions from the multicast sender or a higher level
Group Controller. This reduces delay and decreases the
load for sender and network.

In principle, any regular receiver can become a Group
Controller. However, each communication participant
decides on its own whether it is willing to be a potential
Group Controller or not. A receiver may refuse to perform
local acknowledgment processing and local retransmis-
sions due to its restricted processing power or memory
space. Other reasons for the refusal could be the cost
structure of the Internet service or security considerations.

The definition of Local Groups and their formation
into a hierarchy is supported by the Dynamic
Configuration Protocol (DCP) [7]. It provides
mechanisms for an automated establishment of Local
Groups and for dynamic reconfiguration in accordance
with the current network load and group membership. No
manual administration is necessary. DCP is self-healing,
meaning that it is tolerant of the failure of certain
receivers or a Group Controller.

An important feature of LGMP is implicit connection
establishment. Short term, transaction oriented inter-agent
communication are not delayed by long-lasting
information exchange during connection establishment.

Instead, connections are established implicitly by the first
incoming data packet.

4.2. Performance issues

Appropriate use of IP multicast is a novel approach to
solve the location problem in mobile agent systems.
However, it needs to be clarified how fast IP multicast
will reflect changes of agent location and whether the
observed delay is acceptable for the envisaged application
environment. In addition, the question arises whether the
approach generates more multicast routing load than it
prevents in data traffic load. In order to answer these
questions, simulations as well as measurements in the
MBone have been applied.

A mobile agent travelling from one agent meeting
point (AMP,) to another one (AMP,) has to perform
several tasks. It causes AMP, to leave the corresponding
multicast group and stimulates AMP, to join it. Before
being able to receive multicast packets at AMP,, the
updated group membership information needs to be
distributed by the underlying multicast routing protocol
and the routing tree must be changed to reflect the new
location of the mobile agent. The delay AT incurred by
these updates is defined as the interval between time T,
and time 75, whereby 7 refers to the moment of issuing a
join request and 7, defines the earliest point of time at
which multicast packets could be received. To determine
realistic values for AT, several experiments in the MBone
have been performed. Multicast capable skeleton AMPs
have been placed on workstations at the University of
Karlsruhe, at the University of Braunschweig and at the
University of Hannover. One of them has been set up to
home a sending agent, which transmitted test messages at
the maximum possible rate to a certain multicast group m.
In order to determine the delay A7, an agent located at
another AMP stimulated a join request a time 7). After
reception of the first multicast packet at time 7, the delay
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Figure 5: Delay of multicast messages



is calculated to AT = T, - T,. Various experiments have
been performed to determine the join delay for different
scenarios. The results show highly volatile values, which
do not allow any definitive statement about the join delay
to be expected for agent migration. However, values for
AT ranged between 1 ms and 140 ms. This timescale
seems to be quite acceptable, because a newly migrated
agent is able to participate in inter-agent communication
after this relative short time bound. No further location
mechanism is necessary any more.

Besides the benefits in agent location, the use of
scalable multicast techniques also results in reduced
network load and decreased average transfer delay.
Because benefits of multicast communication compared to
successive unicast transfer are obvious, our performance
evaluation focused on a comparison of LGMP and
classical, sender-based multicast schemes.

All simulations were based on BONeS/Designer, an
event-driven network simulation tool by the Alta Group of
Cadence. The simulation scenario consists of a sending
agent and various receiving agents which are connected to
a certain subnet. The sending agent is linked to the subnet
across a wide area network. The evaluation examined the
impact of group size on average transfer delay and net-
work load. The values obtained for LGMP were com-
pared to corresponding results for two common sender-
based techniques using multicast and unicast retrans-
mission. Transfer delay was assumed to 20 ms for the
wide area link, which is approximately the delay for
transferring data between the East and West coast of the
USA, and was fixed to 2 ms within the subnet. Error
probability was assumed to be 107 for message loss
through buffer overflow or bit errors, which is not
uncommon for highly loaded internetworks. This value
was derived from many measuring cycles to randomly
selected internet hosts using the ping command. Other
simulation parameters included data rate, processing delay
within communication systems, status request rate, and
burst length.

The impact of group size on average transfer delay is
given in the above diagram. The graph shows for all
techniques an increase in the average transfer delay with
increasing numbers of receiving agents. The sharp
increase for the common, sender-based approach can be
explained with the large number of acknowledgments that
have to be processed solely by the sending agent. The
relative high values for average transfer delay are mainly
caused by retransmissions across the wide area link. Local
retransmissions, as performed by LGMP, effect a less
strong increase in transfer delay. The benefit for LGMP is
extremely high for large agent groups, but transfer delay
still increases with the number of receivers. The
establishment of several subgroups with a restricted
number of agents leads to a distribution of

acknowledgment processing to different local Group
Controllers. In the third simulation, the maximum size of
Local Groups was defined to 50 members. Therefore,
every Group Controller just has to process a maximum of
50 acknowledgments. This results in an soft upper bound
for transfer delay, because every Local Group with more
than 50 receivers is separated into diverse subgroups with
fewer members. This division distributes the burden of
acknowledgment processing to different controllers and
avoids further increase of transfer delay due to
acknowledgment processing overhead.

To clarify the difference between unicast and multicast
retransmission for both of the common techniques, 50
receivers were added at the sending side of the wide area
network for evaluation of network load. The result is
illustrated in the diagram shown below. For both common
techniques, the ratio of retransmissions and total data
traffic over the wide area link depends directly on the
number of recipients. LGMP, in contrast, is not influenced
by the number of receiving agents and shows very low
values compared with the results of the other techniques.

5. An example application

We illustrate the application of our approach to mobile
agent communication in an example from the electronic
marketplace. The task which we would like to solve with
the help of a group of mobile agents consists in finding
the cheapest arrangement for a new personal computer we
intend to buy. Being eager to keep abreast of the rapidly
evolving technological advances we scoff at pre-installed
turn-key solutions and wish to configure the system
ourselves from individual components such as a
mainboard, a CPU, a harddisk, video components,
memory, a metal case, input devices, and a monitor. Our
budget for the new machine is, unfortunately, strictly
limited, therefore we are willing to expend some effort at
finding the best deal. Prospective part dealers are situated
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all over the country and since we are still reasonably
patient there is enough time for shipment even from the
farther locations. Comparing prices is, of course, a tedious
job so we instantiate a team of mobile agents to carry out
the search for components on the global network. Since
we are rather sure of our preferences we can provide a set
of simple rules for acceptable component types (board
manufacturer, HD brand, etc.), prices we expect to pay for
the respective variants, and the date we need them
delivered to us. With these, we initialize our mobile
agents and set them to their tasks.

While the setting unrolled so far is nothing untypical, it
goes beyond the simpler examples given e.g. in [19] in
that the overall task to be solved encompasses a number
of closely related subtasks which makes the linear
approach of sending a single mobile agent to all sites in
sequence inappropriate. Pricing structures and differences
in components in stock at different merchants turn the
problem into a complex distributed coordination task that
would require the single agent to accumulate all the
available information in a first step and subsequently
analyze the data pile to come up with the solution. A team
of clones, however, can be sent to all known component
dealers simultaneously, inquire about the present offers
locally and exchange their findings with other team
members. Use of several agents in parallel allows us to
exploit one the second strength of mobile agents: remote
monitoring of data. If the search for components is
initiated some time before the delivery deadline, the team
of agents can wait for price drops — at times a safe bet in
some market segments such as harddisks.

The communication pattern for this application is
dominated by multiparty exchanges. In the first step, a
team of virtually identical agents migrates from the home
site of the prospective PC owner to agent meeting points
run by or located in the vicinity of component dealers. For
the location of suitable component dealers we rely on a
trading service [8] either in the shape of an external
service provided by the networking infrastructure or as an
integral component of the AMP, as has been suggested in
several architectural concepts for mobile agent systems
(e.g. [2], [19]). The initial migration of the agent group
can be very effectively supported by setting up a multicast
group for the transfer of the encapsulated agents. The very
same multicast group will be used during the coordination
phase between the agent team. An agent which finds an
acceptable component in the offer of its assigned dealer
spreads this information via the multicast group to all its
peers. Depending on the market model underlying the
agent system, the peer agents can then try to bargain with
their dealers or simply stop looking for a specific
component class when it is clear that they cannot surpass
the advertised offer.

boards, RAM,
video, cases

CPUs, HDs,
video, boards

"\ agent migration
N
>

o component dealer

v . . 4
~_ agent coordination video, cases )

Figure 4: Using mobile clones to find PC
components

To further limit the network traffic it is possible to
separate the agent team into subteams concerned with
specific components. It may be, for instance, advisable to
coordinate the selection of the harddisk, the CD-ROM,
and the disk controller because they are technologically
dependent. The choice of monitor and graphics board,
however, is largely independent of the mass storage
aspect. After finding a solution for these subtasks, an
additional negotiation may be necessary to meet the
global pricing constraints or converge on a consistent
delivery date. This hierarchical pattern of communication
is equally well suited to our approach. In addition to the
application-global multicast group a set of component-
specific multicast groups is formed which carry the
messages related to a specific component type.

The scenario presented in this chapter is easily
extended to the even more practically relevant setting of a
computer dealer who configures systems according to his
customer’s specifications and entertains business relations
to several component wholesalers. In this case there is a
fundamental business interest connected with finding
cheap and timely deliverable components, and the
repetitive character of the task makes it worthwhile to
choose an efficient communication pattern for the agents.

6. Conclusion and outlook

We have presented a new approach to the problem of
realizing an efficient and scalable mechanism for the
location of and communication between large-scale



mobile agent populations. We have based our architecture
on multicasting technology on the network protocol layer
and have discussed necessary extensions to provide the
quality-of-service required by mobile agents, namely
reliable delivery and suitability for highly dynamic
reconfiguration among the receiving agents. Initial
measurements of migration delays and error-induced
retransmissions for a protocol extension based on local
groups appear promising for a practical application to
mobile agent computing.

We intend to widen our focus to integrate other as yet
unsolved aspects of mobile agent systems in our
framework. In terms of agent security, for example, our
approach to the underlying transport mechanism can be
treated largely like any other transport infrastructure.
Authentication and encryption schemes between agent
meeting points can just as readily be implemented on top
of a multicasting transport as on unicast systems.
Preference should be given to mechanisms with a minimal
number of exchanged messages (ideally one-way
schemes) to avoid effects similar to the sender implosion
mentioned in the fundamentals section. One additional
concern is the possible monitoring of multicast group
development by a hostile agency which might serve to
gain knowledge on agent distribution patterns. Since the
IP multicast does not provide any explicit membership
information an attacker would have to break into the
communication service of a group member AMP to find
the association between an agent group and the underlying
multicast group and would still learn no more about group
membership than in the case of multiplexed unicast
connections. We therefore conclude that the vulnerability
of our scheme to security attacks is on par with
conventional systems in all practically relevant aspects.

In the mid term we will incorporate our findings into a
more complete mobile agent runtime architecture and
carry out detailed studies on the performance of our
multicasting scheme under a number of different
communication patterns. Eventually we plan to design an
integrated communication infrastructure that gives
assistance in choosing an efficient group hierarchy suited
to the specific communication demands of an application.
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