
Design and Implementation of a Caching System for Streaming Media over the
Internet

Ethendranath Bommaiah, Katherine Guo, Markus Hofmann, Sanjoy Paul
Bell Laboratories, Holmdel, NJ 07733, USA

(ethen, kguo, hofmann, sanjoy)@dnrc.bell-labs.com

Abstract

Congested networks and overloaded servers resulting
from the ever growing number of Internet users contribute
to the lack of good quality video streaming over the Inter-
net. We propose a design and implementation of a caching
system for streaming media, which utilizes its local memory
and disk resources to reduce network and server load, while
also improving the video and audio quality perceived by
end users. In particular, request aggregation, prefix caching
and rate control mechanisms are used in the system design.
The effectiveness of the system is validated through perfor-
mance results from prototype implementation. As expected,
the caching system reduces network and server load and
improves client start-up latency.

1 Introduction

Streaming media delivery is gaining popularity as indi-
cated by dramatically increased deployment of commercial
products for playback of stored video and audio over the
Internet [9], and proliferation of server sites that support
audio/video content. Media quality as perceived by the end
user however, is still very poor because support is lacking
in the Internet to meet delay and jitter requirements for real
time traffic. In particular, start-up latency and frenquency
and length of interrupts of media streams increase signif-
icantly during periods of network congestion and media
server overload. A number of techniques can be used to
alleviate this situation.

Advanced encoding/decoding and smoothing mecha-
nisms reduce the load on the network but not the load on the
server. Support for quality of service in routers can improve
quality by reducing delay, jitter and loss. However, we be-
lieve that application level caching entities called helpers
placed within the network can not only provide benefits of
transcoding and smoothing, but also reduce network load
and server load by aggregating client requests as well as

serving clients from a closer point in the network than the
media host server.

Compared with traditional proxy caching for Web pages,
streaming media presents new challenges. The real time
requirements of multimedia streaming contributes to much
of the complexity at the helper. Many of the media server
functionalities such as scheduling and resource manage-
ment need to be incorporated in the helper design. Given
the large size of multimedia files and limited disk space at
each helper, a limited number of files can be cached in their
entirety.

This paper focuses on the design and implementation
issues related to disk and memory utilization at a helper
that inter-operates with media clients and servers using
RTSP [13] and RTP [12] as their control and data protocols,
respectively. This work demonstrates the advantage and
feasibility of implementing a caching system for streaming
media within the current Internet framework. The proto-
type implementation is used in validating the performance
claims.

The rest of the paper is organized as follows. Section 2
presents the motivation and design of helpers in the net-
work. Section 3 describes the implementation of a single
helper. Section 4 discusses the performance evaluation fol-
lowed by related work in Section 5. Finally, the conclusion
is presented in Section 6.

2 The streaming cache design

The core elements of our streaming cache design are
helpers, which are caching and data forwarding proxies in-
side enterprise networks or ISP networks. Helpers serve re-
quests for streaming objects by sharing common resources
as often as possible. Each client is associated with one
helper which handles all the requests from the client. A
client interested in getting a certain streaming object sim-
ply sends its request to the host server, but the request is
redirected to the client’s helper (

�
in Figure 1) either trans-

parently by a layer-4 switch or by configuring the proxy in
the client’s software.

Server

Helpers

Clients C1

S

C2

Disk Cache

Network

Memory Buffer

H
Hi

Figure 1. Application layer aware helper in the
network.

On receiving the request, helper
�

serves the request
itself if possible, otherwise it forwards the request to the
most appropriate helper or the server. Each helper has lim-
ited disk, memory, network, and computational resources,
and to maximize the number of accepted requests, it must
make judicious decisions on how these resources are allo-
cated and managed. The caching system consists of a net-
work of helpers. Issues related to how these helpers cooper-
ate, how to find the best helper and performance evaluations
of the multi-helper system are persented in [7]. For clarity,
this paper focuses on the design, operation, and evaluation
of a single helper. This paper also does not discuss intelli-
gent scheduling algorithms which can be adopted towards
better utilization of computational resources.

The following sections discuss several techniques used
in the helper design to better support streaming media over
the Internet. These include Segmentation of Streaming Ob-
jects into smaller units for caching purposes, Client Request
Aggregation using memory and disk resources at the helper,
and Data Transfer Rate Control from the helper to fill the
initial buffer at the client to reduce start-up latency.

2.1 Segmentation of streaming objects

There are two major differences between streaming ob-
jects and regular static objects like text and images on the
web: their size and timing requirements. The size of stream-
ing objects is normally an order or two larger than that
of regular static web objects. For example, a single, two-
hour long MPEG-I movie requires about 1.4 Gbytes of disk
space. Given finite disk capacity, only a limited number
of movies can be stored at a helper, which decreases hit
probability and efficiency of the caching system. For ex-
ample, storing a frequently accessed movie in its entirety
at the helper makes a lot of sense. Storing an entire movie
that will probably not be accessed in the future wastes disk
space. It would be natural to divide movies into segments
and distribute the segments among the helpers. However, it
still makes sense to store very hot movies in their entirety.

Timing is the second fundamental difference between

segments of a streaming object and a set of static objects,
such as HTML pages or images. Each stream segment has
a starting playback time and an ending playback time by
which they are inter-related. Thus, when a streaming re-
quest arrives at a cache, it is not simply the question of a
hit or miss. It is possible that the request will be a partial
hit in the sense that one part of the requested streaming ob-
ject is in the cache and the remaining parts are stored else-
where. This is different from classical web caching. As
a result, a requesting host might end up getting multiple
pieces of the streaming object from different helpers or the
media server. This not only increases signaling cost, but
also increases the probability of losing synchronization. To
reduce these costs, it is preferable to cache successive seg-
ments at a given helper rather than cache a sequence of seg-
ments with multiple gaps. This can be achieved by prefix
caching [14] where segments of a movie are ejected from
the end by replacing the last segment first. We record the
last access time of each clip, and replace the Least Recently
Used (LRU) clip from its end when new space is needed
on disk1. This anticipates that users will play media objects
from the beginning.

2.2 Client request aggregation

Requests for streaming objects are heterogeneous in na-
ture. In particular, heterogeneity can appear in the following
three forms:

� Media object heterogeneity: Different requests are for
different media objects.

� Arrival time heterogeneity: Requests for the same me-
dia object tend to arrive at different time instances.

� Range heterogeneity: Each request for a media object
is associated with a playback range. A request is of-
ten from the beginning of the object. However, VCR
operations like rewind and fast forward will generate
requests from the middle of the object.

Arrival time and range heterogeneity for the same media
object can be represented by temporal distance. Consider
two requests ��� and ��� for the same media object, where ���
requests the object at time

� � from �	� seconds to its end,
and ��� requests it at time

� � from �
� seconds to its end, as
shown in Figure 2. We define temporal distance between
the two requests as the time difference between the requests
for the same data packet, and this difference is �
� ����� �������� � ���
�
����� � � ���
�	��� � � � ��� � ����� � �
�!�
�	��� .

A client request can be served out of memory or disk of
its own helper, other helpers or the server, or any combina-
tion of them. The goal of a helper is to reduce the number

1Other cache replacement policies such as LFU can also be used.

t1 t2

p2

∆(r1,r2)
time

Data for r1

Data for r2

p1

∆(r1,r2)

0

0

Start position for r1

Start position for r2

Figure 2. Temporal distance between two re-
quests

C2

H

C1

S

B

B’

t1 t2

Data for r2
Data for r1

∆(r1,r2)

time

C2

H

C1

S

B

t1 t2

Data for r2
Data for r1

time

∆(r1,r2)

∆b

Buffer filling direction

(a) � ����� ��� � ��� (b) � ����� �������

Figure 3. Ring buffer allocation for two re-
quests ��� and ��� .

of requests sent to the server, thereby reducing server load
and network load. To accomplish this, the helper serves as
many requests for the same object from its memory and disk
as possible. This is called client request aggregation and is
achieved by the buffering scheme described below.

A helper uses ring buffers in memory for short term stor-
age and caches on disk for long term storage. A ring buffer
of a given size can only serve requests arriving in a certain
time range. The maximum temporal distance between two
requests that can be served out of the same buffer is called
buffer temporal distance.

The basic operation of a helper is similar to that of a
regular cache. Whenever a request for a specific streaming
object is received at a helper for the first time, the helper for-
wards the request to the server. Upon receipt of the request,
the server starts streaming the object to the helper. The
helper stores data in its memory and disk, and at the same
time streams data to the client. In particular, the helper allo-
cates a ring buffer in memory which corresponds to buffer
temporal distance ��� seconds of data. The ring buffer op-
erates as a moving window, and memory is reclaimed using
a garbage collection scheme as discussed in Section 3.3.3.
The ring buffer is allocated in anticipation of other clients
requesting the same movie in the near future.

In the example represented in Figure 3, client � � re-
quests a streaming object from its beginning at time

� � . This
request ��� is forwarded to the server by the helper

�
. Upon

receiving data from the server, the helper
�

allocates a ring
buffer 	 to store the first ��� seconds of the stream. At some
later time

� � , client ��� requests the same streaming object
from its beginning via � � . If

� � is close enough to
� � , that

is, their temporal distance � � ����� ����� � � ��� � � � ��� , then
at time

� � , the beginning of the stream is still available from
the ring buffer 	 2. Therefore ��� can be served directly from
the helper’s buffer. This scenario is depicted in Figure 3(a).

If � � ����� ����� � ��� as shown in Figure 3(b), the beginning
of the stream is not in the buffer 	 . any more. Instead, the
helper allocates another ring buffer 	�
 of size ��� seconds,
and fills it with the beginning of the stream from either local
disk, other helpers, or the server. At the same time, the
helper streams data out of 	
 to client ��� .

One objective of the ring buffer is to serve multiple re-
quests with only one stream from the server. However, the
ring buffer size is limited by memory resources which are
scarce compared to disk space. Disk space is also limited at
a helper. Therefore a streaming object might not be stored
on disk at one helper in its entirety. As a result, a helper can
serve a client’s request from any combination of the follow-
ing sources: ring buffer in its memory, cache on its disk,
memory or disk of other helpers and the server.

2.3 Data transfer rate control

We follow the design principle that helper operation is
transparent to the original client and server operation. Af-
ter receiving a client’s request, the media server sends out
data packets according to its playback rate � bytes/second.
Each client keeps a playout buffer of � seconds, and does
not start playing the object until its playout buffer is filled.
The purpose of this buffer is to absorb network jitter. When
a client request is served from a helper at rate � , the ini-
tial playout buffer can be filled faster than from the server
because of smaller network distance and reduced network
congestion. Furthermore, the helper has the freedom to
download data to the client as fast as possible to reduce
client start-up latency even further. The mechanism for data
transfer rate control is illustrated as follows.

Figure 4 compares two scenarios: one involves a server
and a client, the other involves a helper between the server
and the client. We assume the delay between the server and
the helper is
 � , and between the helper and the client is

 � . For simplicity, the delay between the server and the
client is
 ����
 � . The server sends streaming data at rate
� bytes/second to the client or the helper depending on the
scenario. One goal of the helper is to reduce client start-
up latency which is defined as the time difference between

2For simplicity, we do not consider network delay in this formula.

K sec

C

S

d1+d2

rate = r

H

C

S

K sec

d1

d2

K sec

rate = r

rate = min(a,b)

K1 sec

rate = a
delay = d

another
source

(a) client-server (b) client-helper-server

Figure 4. Streaming rate between the helper
and the client.

sending a request and starting to play the media object at the
client. In Figure 4(a), without a helper, the start-up latency
is ��� ��� �
 � �
 ��� � � (1)

where the factor 2 represents the round-trip time.
In Figure 4(b), assume the helper has � � seconds of data

in its buffer where � � � � � � . Helper
�

’s buffer size
is independent of � , however, only the initial � seconds
are related to client’s start-up latency. It takes
 � seconds
for the request to arrive at the helper. Once the helper re-
ceives the request, it starts two processes concurrently. One
is to download the existing � � seconds of data to the client
as fast as the bandwidth allows. Assuming the average rate
between the helper and the client is � bytes/second, it takes�
�
������� � seconds to download � � seconds of data. The

other process is to request � � � � seconds of data from ei-
ther its local disk, or another helper, or the server. Let
 des-
ignate the one-way latency between these sources and the
helper and let � designate the bandwidth from these sources
to the helper. It takes �
 seconds for the first byte of the
data to arrive at the helper. Thus the time for both processes
to finish is 	
��� � �
� �
� ��� �
 � .

Only after both processes finish, can the helper start
sending the remaining � ��� � seconds of data to the client.
During this step, the buffer at the helper is filled with rate �
and drained with average rate of � . In order to avoid buffer
underflow, the actual draining rate for the buffer is set to
	���� � � � � � , therefore the time for this part of data to arrive
at the client is
 � � �

� � �
��� �
��	���� � � � � � . The resulting
start-up latency is then

� � �
 � ��	
��� � �
���
� ��� �
 �
��
 � � � � � �
� � �
��	���� � � � � � (2)

Consider the situation where the helper does not have any
data cached, and compared with other helpers, the server is
the best choice to get data. In this case, � � ��� ,
 �
 � ,

2 4 6 8 10

0

1000

2000

3000

4000

5000

b/r

st
ar

t−
up

 la
te

nc
y

(m
se

c)

− − − without a helper
* * K1 = 0 sec
−x− K1 = 1 sec
−+− K1 = 3 sec
−o− K1 = 5 sec

2 4 6 8 10

0

1000

2000

3000

4000

5000

b/r

st
ar

t−
up

 la
te

nc
y

(m
se

c) − − − without a helper
−o− with a helper

(a) from the server (b) from helper’s local disk

Figure 5. Start-up latency when getting data
from different sources.

� � � , and 	���� � � � � � ��	���� � � � � ��� � , therefore the start-
up latency

� �����
 � ���
 � � � which is the same as
���

.
The only parameter that the helper can control to im-

prove start-up latency is the data transfer rate from the
helper to the client. In the following example where the
helper is requesting � � � � seconds of data from the server,
� � � , and we set
 � ����� ms,
 � ��� ms, � ��� s.
We vary the ratio between helper’s data transfer rate � and
the server’s playback rate � between 1 and 10, and vary the
amount of cached data � � between 0 and 5 seconds. When
�
� ��� , the latency is the same as getting data directly
from the server. When � � �!� second, �
� seconds of data
are transferred with rate � , and � � � � seconds of data are
streamed with rate � . As shown in Figure 5(a), with a fixed
�
� , the start-up latency decreases as � � � increases, and with
a fixed � � � , the latency decreases as � � increases.

In the case where the remaining � � � � seconds of data
are stored on the helper’s local disk, we have
 �"� , and
disk bandwidth is greater than network bandwidth (� � �).
Then the entire � seconds of data are transferred with rate
� regardless of the value of � � . The result is shown in Fig-
ure 5(b).

3 Implementation

This section discusses the implementation details of a
helper. Although the design is fairly flexible to accommo-
date control and data protocols used by different vendors,
we have implemented our helper using RTSP [13] as the
control setup protocol and RTP [12] as the data transport
protocol.

3.1 Overview

As the helper is located in the network, it behaves as
a media server to the clients and as a media client to the
servers. The helper also manages its local memory and disk
resources. Figure 6 presents the main modules of a helper:

Scheduler

Buffer
Mgmt.

Cache
Mgmt

RTP server

 RTSP server RTSP client

RTP client
client

To/from To/from
server

Figure 6. Main modules of a helper.

� RTSP/RTP client and server: The RTSP/RTP server
module receives and processes RTSP requests from the
clients, and interacts with the RTSP/RTP client mod-
ule to forward them to the server after appropriate
header translation; it also streams data to the clients
using RTP. The RTSP/RTP client module contacts me-
dia servers or other helpers across the network to fetch
data for client requests.

� Buffer Management: This module manages the avail-
able memory in the form of a pool of buffers, each
associated with a media object, identified by an URL
and a time range. It attaches a new incoming request
to an existing buffer in the pool if possible; otherwise,
it allocates a new buffer for the request as discussed
in Section 2.2. It utilizes the RTSP/RTP client module
to fetch data that is not available in local disk cache.
It interacts with the Cache Management module when
recording data for a media object into the cache and
reading data for a media object from the cache.

� Cache Management: It maps URLs to local filenames
and manages the disk space allocated for caching by
implementing a suitable cache replacement policy (for
example, LRU). It allows non-overlapping time seg-
ments of a media object to be recorded into and read
from a single file.

� Scheduler: It manages the global queue of events,
each scheduled to execute at a certain time. Example
events include data producer and consumer events, and
garbage collector events as discussed in Sections 3.3.2
and 3.3.3.

3.2 RTSP/RTP client and server

Unlike HTTP, the control protocol (RTSP, for example)
used for media streaming is not a stateless protocol. With-
out a helper, the necessary state is managed by the me-
dia server. In the presence of a helper, the state for me-
dia streamed to the clients by the helper is managed by the

helper. For example, in the case of RTSP, the session iden-
tifier will be issued and managed by the helper for sessions
for which the helper is the data source. Note that this does
not preclude the actual server from managing session state
as helpers or end clients might still go directly to the server
for the media.

Helper Server

sid=2657

sid=2657

sid=2657

sid=785

sid=785

sid=785

Client

OPTIONS

DESCRIBE

SETUP

PLAY

TEARDOWN

CSeq=5

CSeq=4

CSeq=3

CSeq=2

CSeq=1 CSeq=1

CSeq=2

CSeq=3

CSeq=4

CSeq=5

RTSP

RTP

RTSP

RTP

RTSP

RTP

Disk

Buffer

records
Server session

record
Client session

(a) (b)

Figure 7. (a): RTSP message exchange
across client, helper and server. (b): Ses-
sion records at a helper for sessions with the
clients and with the server, and the shared
data buffer.

We now discuss the sequence of RTSP messages ex-
changed between a client, a helper, and a server, in cases
where no data or only partial data for the media object is
obtained from the local cache (Figure 7(a)). Note that the
client-helper session is independent of the helper-server ses-
sion: the two sessions have different RTSP session identi-
fiers as well as different RTP SSRC (synchronizing source)
identifiers. Translation of certain headers in the RTSP mes-
sages from the clients is thus necessary before forwarding
them to the server. The helper forwards the OPTIONS, DE-
SCRIBE, and SETUP message requests from the client to
the server and forwards responses from the server to the
client after suitable translation of CSeq (sequence number),
Session, and Transport headers. The helper forwards the
PLAY request to the server with a modified Range header
based on how much data is available from the local buffer or
disk. A TEARDOWN message is forwarded to the server
once all the requested data is received from the server. If
a local buffer has already been created to serve data in the
requested range, then a TEARDOWN is sent to terminate
the helper-server session for this request. In the meantime,
data is streamed out of the local buffer.

Figure 7(b) illustrates the data structures used in the sce-
nario where one local buffer is used to serve multiple client
requests. In this case, a single session with the server is used
to serve multiple client sessions thereby achieving request
aggregation using the buffer.

The RTSP implementation in media players and servers

from Real Networks [9] uses proprietary headers with en-
crypted header fields, which forced us to blindly forward
OPTIONS, DESCRIBE, and SETUP messages to the server
for every client request even if the data was available in the
helper. While we would have preferred not to contact the
server for URLs for which data is available in the helper,
we are forced to do so in order to make our helper inter-
operable with Real players and Real servers. Note, however,
that this additional delay incurred for every client request is
negligible: client start-up latency is typically around 5-10
seconds, while the round-trip time for a RTSP message ex-
change is typically around 100 ms.

The data being streamed by the helper to a particular
client might be obtained from different sources. For exam-
ple, the initial segment of a media object may be cached at
the helper while the remaining data must be obtained from
the host server: in particular, RTP header fields (SSRC, se-
quence number, timestamp) will be chosen independently
for the initial segment and the rest of the data. It is the
responsibility of the helper to compose an outgoing data
stream with meaningful RTP headers using data from dif-
ferent sources. Details of stream composition are discussed
in Section 3.3.4.

3.3 Buffer management

The module for Buffer Management is the central
multiplexing-demultiplexing point of the helper. This mod-
ule serves as the data source for the RTSP/RTP server mod-
ule and as the data sink for the RTSP/RTP client module.
The Cache Management module interacts with this mod-
ule when recording data to the cache and reading data from
the cache. The Buffer Management module is currently im-
plemented in the user level and we have not yet addresses
issues related to improving the performance of the data path
involving memory, disk, and network devices [3].

3.3.1 Buffer organization

The Buffer Management module manages a pool of buffers
in main memory, where each buffer contains data for a me-
dia object within a certain time range. At any instant, there
could be multiple buffers in the pool containing data for the
same media object, each for a different time range. Also,
a buffer could be the data source for servicing multiple
clients. The source of data for the buffer itself could be the
local disk, another helper or the server. This corresponds to
the classical producer-consumer problem, where the size of
the shared buffer is bounded. Here, the size of the buffer is
specified in time units.

As each buffer can be filled with data from multiple
sources, it is composed of multiple segments each associ-
ated with a data source and a time range for which data is

fetched from the source into the segment. Each segment
contains an array of RTP packets corresponding to the time
range associated with the segment. As the first sequence
number and time stamp of a RTP stream can be chosen ran-
domly by the source, the helper needs to keep track of them
to perform appropriate translation before forwarding them
to different clients.

ci

t1 t2 t4

cjcn

c2 c1gc

t3 (inactive)

Network Producer (active)

Disk ProducerSegment 1
(0-5 secs)

Reference

(0-10 secs) 0 10
gc

media object

Sliding window range: 2-7 secs

producer(network)

t5 t6 t7 t8
Physical View

Logical View

Segment 2
(5-10 secs)

Figure 8. Buffer organization: logical and
physical views.

Figure 8 shows an instantaneous snapshot of the memory
buffer created to serve data for a media object in the range
[0s, 10s]. The buffer has data in the playback range [2s, 7s].
The right edge of the sliding window moves as the network
producer inserts more data into the buffer, while the left
edge moves as the garbage collector (���) frees data from the
buffer. While this is the logical view, the figure also shows
the actual implementation in terms of data structures: this
buffer is composed of two time segments � � � � ����� and � �	� � �	
�� ;
data for the former segment is obtained from local disk and
for the latter from the network.

� � � � � �
� � � � �	
 represent RTP
timestamps of data packets. The snapshot shows that the
disk producer is currently inactive after having fetched the
requested data from disk, while the network producer is ac-
tively filling the buffer with the remaining data. This buffer
has � consumers: � � � � � �
� � � ��� . � � and ��� are currently con-
suming data packets with RTP timestamps

���
and

�	�
respec-

tively. ��� is the garbage collector event which frees RTP
packets not needed by any of the consumers. The figure
shows that ��� has already freed RTP packets in the range
� � � � � � � from the buffer. The lightly shaded region in the fig-
ure between

���
and

�	�
represents the jitter absorption buffer.

3.3.2 Producer and consumer events

The rate at which data is streamed into and out of the buffer
is governed mainly by the average bit rate of the media ob-
ject. This is best implemented using timer events: events
which insert data into the buffer are considered producer
events and events that stream data out of the buffer are con-
sidered consumer events. These events could also be viewed
as file and network events: file events are for transferring

data from and to the local cached file, while network events
are for transferring data from the server and to the clients.

As with the classical producer-consumer problem, buffer
underflow and overflow problems need to be handled for
each buffer. To address these issues, as shown in Figure 8,
we maintain a list of consumers for each buffer sorted ac-
cording to the position of the next packet to be streamed by
the consumer. Buffer underflow and overflow can be han-
dled for all consumers if it can be handled for the first and
the last consumer. To handle underflow, we need to ensure
that the producer event is ahead of the first consumer � � and
to handle overflow, we need to ensure that the garbage col-
lector ��� is behind the last consumer �
� . The first and the
last consumer of a buffer might keep changing with time
because of range, rate, and arrival time heterogeneity across
consumers using the buffer.

3.3.3 Garbage collection

The goal of the garbage collection algorithm is to free mem-
ory resources (RTP packets) allocated to a buffer when no
longer needed by any of the consumers. As discussed ear-
lier, each buffer is associated with a buffer temporal dis-
tance - ��� , which can also be seen as the size of the tem-
poral sliding window. ��� for a buffer is statically chosen
based on the configuration file when the buffer is created.
Though ��� for a buffer is constant, the number of RTP
packets within the temporal sliding window might vary as
it slides along the timeline of the media object (for variable
bit rate media, for example). Thus, the buffer cannot be
implemented as a simple ring buffer.

One approach would be to associate a reference count
with each RTP packet in the buffer which is equal to the
number of consumers which are yet to “consume” this
packet [10]. The reference count for a RTP packet is decre-
mented every time it is forwarded by a consumer; the packet
is freed once the reference count becomes zero. When the
set of consumers associated with a buffer changes dynami-
cally (consumers joining and leaving the set dynamically),
this approach involves updating the reference count of rel-
evant packets in the buffer each time a consumer joins or
leaves the buffer.

We adopt an approach which attempts to retain minimal
data for each buffer without the reference count overhead.
Each buffer is associated with a garbage collection event
(���) which is first created when the buffer is filled with data
corresponding to ��� , and is responsible for freeing the RTP
packets after they have been forwarded by the last consumer
(���) of the buffer.

The data insertion rate by the producer and the data free-
ing rate by the ��� correspond to the streaming rate for the
media object, which can also be seen as the sliding rate of
the window. While the ��� aims to free RTP packets at the

media streaming rate, it cannot free the packets before they
are consumed by the last consumer. In order to facilitate
this, the consumer list is maintained in a sorted order ac-
cording to the position of the data being consumed by each
consumer: in Figure 8, � � is the first consumer and �
� is the
last consumer. The buffer is freed once all the RTP packets
in the buffer are freed by the ��� .

3.3.4 Outgoing stream composition

Unlike a server, the helper might not have the entire media
object in its local disk and might have to compose an out-
going stream by fetching the prefix data from the local disk
and the rest of the data from the server. Therefore, special
care is needed to create RTP headers for data streamed by
the helper.

RTP packets obtained from a particular source begin
with a random timestamp and a random sequence number
chosen by the source, and have a unique SSRC (synchro-
nizing source identifier) [12]. When data is streamed from
a single buffer to multiple clients using multiple consumer
events, each consumer uses a distinct RTP stream to trans-
fer data. Each consumer � � picks its own random timestamp
and sequence number for the first outgoing RTP packet and
a distinct SSRC for the outgoing stream. Thus, each con-
sumer needs to calculate the timestamp and sequence num-
ber fields for every RTP packet forwarded from the buffer
based on the values for the packet in the input stream and
the values chosen by this consumer for the first packet.

Figure 9 shows an example where the outgoing RTP
stream is composed of RTP streams from two different
sources. Here, we consider a media clip which is 10 sec-
onds long: the initial 3 seconds are cached at the helper’s
disk while the rest of the clip is obtained from a remote
server. Assuming a constant bit rate, 1 RTP timestamp unit
is equivalent to 1 millisecond and every RTP packet con-
tains data equivalent to 16 milliseconds. 88221 and 91205
are the timestamps of the first and last RTP packets ob-
tained from the disk;

�
is the timestamp of the first packet

not cached on disk, shown as a shaded box. 36057 and
43041 are the timestamps of the first and last RTP packets
obtained from the network. We also assume that the data in
packet with timestamp

�
is the same as the data in packet

with timestamp 36057.
The SSRC field in the outgoing RTP headers can be eas-

ily set to the unique value chosen for the stream. However,
the sequence number and timestamp fields need to be set
carefully: the sequence number and the timestamp for the
first packet of the outgoing stream can be chosen randomly.
They are incremented for each subsequent packet following
the same pattern as in the source segment.

A special case occurs when a consumer switches from a
segment with data from disk to a segment with data from

Outgoing stream

Data from the network

Data from disk
(0-3seconds)

(3-10seconds)

Segment 1

Segment 2

(91205+16) - 88221 = 3000

(18144+16) - 8160 = 10000

(43041+16) - 36057 = 7000

(11144+16)-8160 = 11160 - 8160 = 3000

88221 91205 t

11144

36057 43041

11160 18144

8160

Figure 9. RTP timestamp translation for a stream composed of two contiguous segments.

the network. Before forwarding the first packet obtained
from the network, the helper needs to determine the outgo-
ing sequence number and timestamp for this packet. This
translation can be successful if the beginning of the data
from the network corresponds to the end of the data from
the disk. There should not be any gap nor any overlap. As
shown in Figure 9, the outgoing timestamp of the last packet
from disk is �
�
� ��� � ��� ���
� � ��� ��� ��� � ��� �
� � ��� and the
outgoing timestamp of the first packet from the network is
�
�
���
� � � �
�
� ��� ����� � since the timestamp increases by 16
for every RTP packet.

3.4 Cache management

The functionality of the Cache Management module in-
cludes: mapping a URL to a filename, recording; reading
data within a time segment of a media object; and delet-
ing files which have not been used in the recent past. As
discussed in Section 2.1, a specific time segment of a media
object is chosen to be cached on local disk based on the pre-
fix caching technique. A cached copy of a media object is
replaced from the cache based on a cache replacement pol-
icy (for example, LRU). Cache management also ensures
that concurrent read and record requests for the same media
object are handled appropriately.

To make the cache fault-tolerant, an index file containing
meta-information about the cached media objects and their
corresponding local cache file names is maintained. Hash-
ing techniques used in the organization of the index file also
aids faster lookups for media objects. The content of this in-
dex file is flushed onto the disk frequently. When a helper
restarts (after a power failure, for example), the index file is
used to remove any cache files with inconsistent data.

Our goal is to make the helper independent of the me-
dia encoding mechanism. Hence, we cache the data in
terms of RTP packets; we store the RTP payload and min-
imal header information like payload type, sequence num-
ber, timestamp, marker bit, and the RTP header extension
corresponding to every packet cached. With this minimal

information, new RTP packets for the outgoing stream with
appropriate RTP header and header extensions can be cre-
ated. In this context, the cached files have a generic format
conducive to network transfer and can be considered to be
in “RTP file format”, independent of the media encoding
mechanism used.

As media objects are very large, it is not always possible
to cache the entire object on local disk. In addition, requests
can start from any instant in a media object, resulting from
VCR operations for example. Therefore, the format of a
cached file is designed to support the recording/reading of
multiple, non-overlapping time segments of the correspond-
ing media object.

(b)

Segment nSegment 1File Header

Data Packets Data Packets

(a)

Media File Header(with a segment table)

(with Index tables)

Actual disk blocks
of RTP packets

[0,20s] [60-70s]

[0,20s] [60-70s]

Segment Headers

Segment Headers

Figure 10. (a): Logical structure of a cached
file. (b): Physical layout of a cached file.

A cached file is structured as follows:

� Media file header: Each cached file begins with a
header which contains information specific to the me-
dia object stored in the file. Typically, this is obtained
from the server in response to the RTSP DESCRIBE
request. In addition, the header also maintains a seg-
ment table with file offsets marking the start of differ-
ent time segments in the file.

� Non-overlapping time segments: Following the file

header are non-overlapping time segments, each of
which has a segment header containing segment spe-
cific information: start and end timestamps for the
segment; start sequence number; and number of RTP
packets, among others. Data packets belonging to a
segment are organized in terms of consecutive blocks.
The segment header also maintains an index table with
pointers to individual blocks of packets facilitating
faster access to data within a subrange of a segment.

Figure 10(a) illustrates the logical structure of a cached
file viewed as a tree. The media file header with the seg-
ment table is the root of this tree and headers of various time
segments with corresponding index tables are its children.
Figure 10(b) shows the actual layout of the file.

4 Performance

We have implemented the helper on FreeBSD and each
helper is currently a single process. The current imple-
mentation has been tested for interleaved RTP data transfer
along with RTSP control messages on a single TCP connec-
tion.

The performance of the system from both the network
and user perspectives is evaluated in this section. We fo-
cus on the effectiveness of employing request aggregation to
handle the heterogeneity problem as outlined in Section 2.3.
In particular, we look into the arrival time and media object
heterogeneity issues handled by varying the buffer temporal
distance (���) and the size of prefix cache for each movie.

We use a client-helper-server setup, where the client sim-
ulates multiple media players by generating requests for
media objects according to a uniform distribution model
over time. We use the Real server [9] and a media client
which disregards the incoming data; the media objects are
encoded in MPEG requiring us to use the plug-in from DBC
Bitcasting [4] with the Real server. We run the Real server
on a Sun Ultra-4 workstation with 4 processors, 1GB main
memory and Sun OS version 5.6. We run the client on a
300MHz Pentium Pro with 250MB of main memory and
the helper on a 400MHz Pentium II with 250MB of main
memory, both running FreeBSD. The helper and the client
are on a 10Mbps Ethernet interconnected by a router to an-
other 10Mbps Ethernet with the server. We use 12 media
clips encoded in MPEG, whose lengths vary from 40 to 70
seconds.

4.1 Network load and server load

By virtue of request aggregation achieved by the helper,
both server load and network load between the helper and
the server (henceforth referred to as network load) should
be decreased. The traffic reduction ratio is the indicator of

request aggregation achieved by the helper in a given time
interval. It is defined as the ratio of reduced network load
with the helper to network load without the helper. Thus,

� � ��������� � �
� � ��� �������

(3)

where
�������

is the total amount of data transferred from the
helper to the client, and

�
� � from the server to the helper.

A larger value of
�

indicates larger server load and network
load savings. For example,

� � � � � represents a
� �
	 re-

duction in network and server loads offered by this helper.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

10
1

20
1

30
1

40
1

50
1

60
1

70
1

80
1

90
1

10
01

11
01

Time (seconds)

T
ra

ff
ic

 R
ed

u
ct

io
n

 R
at

io

Cache=50s

Cache=40s

Cache=30s

Cache=20s

Cache=10s

Figure 11. Prefix caching benefits: reduction
in network and server loads with increasing
prefix cache size.

0

0.1

0.2

0.3

0.4

0.5

0.6

1

10
1

20
1

30
1

40
1

50
1

60
1

70
1

80
1

90
1

10
01

11
01

Time (seconds)

T
ra

ff
ic

 R
ed

u
ct

io
n

 R
at

io

Buffer=20s

Buffer=50s

Buffer=70s

Figure 12. Buffer request aggregation bene-
fits: reduction in network and server loads
with increasing ring buffer size.

Figure 11shows the cumulative traffic reduction ratio
plotted against time for varying sizes of prefixes cached on
local disk. Requests are generated uniformly by the client

with an average inter-arrival time of 15s and the URLs are
selected from a set of 12 MPEG media objects according
to the Zipf distribution. No cache replacement policy is en-
abled for this experiment, which essentially simulates infi-
nite disk space. In order to preclude any request aggrega-
tion offered by memory buffers, we set � � to 10s which is
less than request inter-arrival time. As expected, the traffic
reduction ratio increases with increasing prefix cache size,
thereby decreasing the server and network loads. We notice
that a load reduction of up to

� � 	 is achieved with a prefix
of size � ��� for the chosen sample of media objects.

Figure 12 shows the cumulative traffic reduction ratio
against time while ��� for individual buffers is varied; re-
quests are generated uniformly by the client with an aver-
age inter-arrival time of 10s. Disk caching is disabled to
preclude any request aggregation by data from disk. Here
again, we notice that the ratio increases with increasing � � ,
thereby decreasing the network and server loads. We notice
that a load reduction of up to � �
	 is achieved with a � � of� ��� for the chosen sample of media objects.

Request aggregation in the buffer and prefix caching are
complementary mechanisms and contribute to the reduction
of server and network loads. Increased benefits from buffer
aggregation can be observed when requests for the same
media object arrive closely in time relative to � � , while
benefits from the cache can be increased by increasing the
prefix size.

4.2 Client start-up latency

To see the effectiveness of the data transfer rate control
mechanism applied at the helper, we measure client start-up
latency by varying � � and the ratio of streaming rates � � �
as discussed in Section 2.3. The measured start-up latency
is the time taken to fill the client’s playout buffer of length
� ����� .

2 4 6 8 10

0

1000

2000

3000

4000

5000

ratio of streaming rates (b/r)

st
ar

t−
up

 la
te

nc
y

(m
se

c)

− − − K1 = 0 sec

 − K1 = 0 sec (formula)

−−x−− K1 = 1 sec

 −*− K1 = 1 sec(formula)

−−+−− K1 = 3 sec

 −o− K1 = 3 sec(formula)

Figure 13. Improvement on startup latency

The solid lines in Figure 13 represent plots from formula

(2) in Section 2.3 and the dotted lines represent our mea-
surements. The parameter setting in the formula is based on
measurements:
 ��� ��� 	�� and
 � � � 	�� . Measurements
show the improvement on startup latency with increasing
�
� and � � � ; a reduction in startup latency of up to � �
	 is
achieved by streaming the initial ��� of the media object at
10 times its streaming rate. Also note that the plots from the
measurements match closely with the plots for the formula.

5 Related work

We aim to improve service quality of streaming media
as perceived by end users by introducing helpers in the net-
work. Each helper employs prefix caching, request aggre-
gation, and rate control mechanisms to improve start-up
latency at end users, while also reducing the network and
server loads.

[14] presents a prefix caching scheme similar to our ap-
proach. In contrast to the workahead smoothing technique,
we increase the streaming rate for the prefix of a clip to
improve the start-up latency even further. [11] describes
a proxy caching mechanism for layered-encoded multime-
dia streams in the Internet. The proxy attempts to replay
a quality-variable cached stream while performing quality
adaptation dynamically. The above mechanisms are com-
plementary to our approach and can be easily accommo-
dated in our system. [17] describes a video staging tech-
nique which is useful in maintaining a constant bit rate
stream between the proxy and the server. This scheme,
however, relies on the server being aware of what data is
available in the proxy cache and hence it is not transparent
to the server.

Service Aggregation [16] aims at aggregating users into
a single channel by using rate adaptation and content inser-
tion techniques along with IP multicast. While our sheme
utilizes the disk and memory resources at the helper for
request aggregation, this scheme requires the end user to
have a larger memory. Higher levels of aggregation can be
achieved by combining our scheme with some of the above
schemes and their suitability at the helper is currently under
investigation.

Extensive work in the context of multimedia servers is
quite relevant to the helper design [6, 5, 3, 2]. In addition
to efficient management of the local memory and disk re-
sources, a helper is also concerned with the reduction of net-
work and server loads. Chaining [15] and Patching [8] em-
ploy proxy cooperative schemes, where proxies share their
local caches thereby further reducing the server load. Our
helper design is aimed for a distributed caching architecture
reported in [7].

6 Conclusions

This paper discusses the design and implementation of
a helper for caching streaming media over the Internet.
The helper strives to improve end users’ perceived qual-
ity of multimedia streams by prefix caching, request ag-
gregation, and rate control. By virtue of its position in the
path between the clients and the servers, the helper attains
high levels of request aggregation by using its memory and
disk resources to overcome heterogeneity in client requests,
thereby reducing the server and network loads. The proxim-
ity of the helper to the client, along with increased stream-
ing rate of the prefix of the media object improves the start-
up latency at the client.

Performance measurements clearly show the benefits of
prefix caching, buffer aggregation, and rate control mech-
anisms. For the sample set of media objects of about 1
minute in length, the system demonstrates up to

� � 	 re-
duction in network and server loads by caching prefixes of
length � ��� compared to a helperless system. A � �
	 reduc-
tion in network and server loads is demonstrated by using
request aggregation with buffer of

� ��� . By streaming the
initial ��� of a media object at 10 times the streaming rate, a
� �
	 improvement in the start-up latency is achieved. The
implementation of the helper incorporates most of the issues
discussed in this paper and is inter-operable with the popu-
lar Real players and servers. As observed in [1], user access
patterns, media characteristics (length of the clip and the
bit rate, for example), among others play a key role in the
benefits achieved by any system aimed at improving stream-
ing media service quality. In this context, we are currently
working towards productizing the helper and deployment in
the Internet.

Acknowledgments

We would like to thank Jonathan Lennox, Jonathan
Rosenberg, and Henning Schulzrinne for helpful discus-
sions on RTSP and RTP. We would also like to thank Milind
Buddhikot, Ray Miller and Mike Vernick for their valuable
suggestions to improve the paper.

References

[1] S. Acharya and B.Smith. An experiment to characterize
videos on the world wide web. In Proc. ACM Multimedia,
Sept 1998.

[2] K. Almeroth and M. Ammar. On the use of multicast de-
livery to provide a scalable and interactive video-on-demand
service. Journal on Selected Areas of Communication, Aug
1996.

[3] M.M. Buddhikot, X.J. Chen, D. Wu, and G. Parulkar. En-
hancements to 4.4 bsd unix for networked multimedia in
project mars. In Proc. IEEE Multimedia Systems, Jun. 1998.

[4] Digital Bitcasting Corp. Internet homepage.
http://www.bicasting.com, 1999.

[5] A. Dan and D. Sitaram. A generalized interval caching pol-
icy for mixed interactive and long video environments. In
Proceedings of IS&T SPIE Multimedia Computing and Net-
working Conference, San Jose, CA, January 1996.

[6] A. Dan, D. Sitaram, and P. Shahabuddin. Dynamic batching
policies for an on-demand video server. Multimedia Systems,
4(3):51–58, June 1996.

[7] M. Hofmann, E. Ng, K. Guo, S. Paul, and H. Zhang. Caching
techniques for streaming multimedia over the internet. Tech-
nical Report BL011345-990409-04TM, Bell Laboratories,
April 1999.

[8] K. A. Hua, Y. Cai, and S. Sheu. Patching: A multicast tech-
nique for true video-on-demand services. In Proceedings of
ACM Multimedia ’98, Bristol, England, September 1998.

[9] Real Networks. Internet homepage. http://www.real.com,
1999.

[10] U. Ramachandran, R.S. Nikhil, N. Harel, J.M. Rehg, and
K. Knobe. Space-time memory: A parallel programming
abstraction for interactive multimedia applications. In 10th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, May 1999.

[11] R. Rejaie, H. Yu, M. Handley, and D. Estrin. Multimedia
proxy caching mechanism for quality adaptive streaming ap-
plications in the internet. submitted to IEEE Infocom, 2000.

[12] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
Rtp: A transport protocol for real-time applications. Internet
Request for Comments 1889, January 1996.

[13] H. Schulzrinne, A. Rao, and R. Lanphier. Real time stream-
ing protocol (rtsp). Internet Request for Comments 2326,
April 1998.

[14] S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching for
multimedia streams. In Proceedings of IEEE Infocom’99,
New York, USA., 1999.

[15] S. Sheu, K. A. Hua, and W. Tavanapong. Chaining: A gener-
alized batching technique for video-on-demand systems. In
Procedings of IEEE International Conference on Multimedia
Computing and Systems, Ottawa, Ontario, Canada., 1997.

[16] D. Venkatesh and T.D.C. Little. Dynamic service aggrega-
tion for efficient use of resources in interactive video deliv-
ery. In Proc. of the 5th NOSSDAV, Nov 1995.

[17] Y. Wang, Z.-L. Zhang, D. Du, and D. Su. A network con-
scious approach to end-to-end video delivery over wide area
networks using proxy servers. In Proceedings of IEEE Info-
com, April 1998.

