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ABSTRACT
Increasing web traffic has led to the deployment of network
intermediaries at the edges of the network. In particular
caching proxies and content delivery surrogates have been
very successful in accelerating web content delivery and
reducing the load on origin web servers.

Today, however, users and content providers are de-
manding faster distribution of web content to end users.
Also, many users are looking to their ISPs to provide ad-
ditional content-oriented services, including filtering, se-
curity, personalization, and transformation services. At
the same time, ISPs and other service providers are facing
increased competition - which drives slimmer margins for
basic access and data transport services.

These recent developments suggest utilizing the existing
network edge infrastructure as a platform for a new class
of intelligent services. These services provide tangible ben-
efits for the end user and incremental revenue opportunity
for the service providers.

This article explains a flexible and open architecture
to enable network edge intermediaries to host a variety
of content-oriented services. Special emphasis is put on
the representation and processing of rules leading to the
invocation of these services. This article also describes
a research prototype implementation of a service-enabled
intermediary and several example services.
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1. INTRODUCTION
The Internet as of today is still mostly governed by the

“end-to-end” principle [11] which demands that the net-
work itself is to be kept as simple as possible and that
all intelligence resides at the end-systems. This principle
proved to be very successful and benefical for the evo-
lution of the Internet. Despite its success, we have re-
cently seen more application-specific functionality moving
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into the network, in particular to the edges of the net-
work. Deployment of network caches and content-aware
switches are probably the most widely known examples
for this kind of functionality. It helps accelerating the de-
livery of static web pages by moving content closer to the
user. However, margins for such basic delivery services are
getting slimmer. Service providers have to take advantage
of opportunities to provide new value-added content ser-
vices for differentiation and additional revenue. Examples
of such services include, but are not limited to, content
filtering, content adaptation, dynamic and personalized
content assembling, ad insertion and virus scanning.

While most of these services could also be installed on
and provided at the client machine itself in order to ad-
here to the end-to-end principle, there are reasons to move
them to the network edge. The typical Internet user of to-
day, for example, can be best described as a non-technical
consumer who wants to use the latest Internet technology
without having to worry about technical matters like soft-
ware installations or updates. Furthermore, new types of
Internet access devices like PDAs and mobile phones may
not always have the processing power that is necessary to
run the software for providing value-added services. Other
Internet appliances may only be capable of running hard-
coded software so that software upgrades would not be
possible at all.

Rather than developing a service-specific infrastructure
from scratch, this article outlines the extension of the ex-
isting network edge infrastructure towards a flexible and
open platform for a variety of new content services. It
makes use of and extends existing intermediary devices,
such as caching proxies and content-aware switches, en-
abling them to perform specific tasks on the application-
layer content that is routed through them. Although this
might look like a violation of the end-to-end principle, it
is somewhat restored by the requirement that one or more
of the parties participating in a content transaction must
authorize the performed services.

The article is structured as follows: Section 2 describes
the overall service platform architecture. In the following
section, a rule specification language and the rule engine
component of the service platform architecture are dis-
cussed in more detail. Section 4 describes a prototype im-
plementation of the proposed service platform and several
example services. Section 5 presents the results of perfor-
mance measurements obtained from experiments with this
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prototype. Related work is shortly discussed in section 7
and the final section summarizes the results of this work.

2. PLATFORM ARCHITECTURE
The service enabling architecture evolves around a com-

mon network intermediary such as a caching proxy by
adding new components, in particular a rule engine, a
service invocation dispatcher, a local and remote service
execution environment, and a message callout client and
server. Figure 1 shows these components and their inter-
action in a service-enabled caching proxy and a remote
service execution server. The following sections describe
how these components help fulfill the requirements of a
network edge service platform.

2.1 Service-Enabled Intermediary
In order to support the execution and installation of

value-added service modules, a network intermediary must
be augmented by additional components. Service mod-
ules may operate on the request/response message stream
passing through the intermediary. They may modify or
satisfy user requests or modify server responses. One ex-
ample would be a content adaptation service which adapts
requested HTML pages so that they can be viewed with
small Internet appliances like PDAs.

It is important to note that more than one service mod-
ule may operate on any given message stream, although
only one service module can modify a message stream at
a time. For example, an advertisement insertion service
could insert an advertisement banner into a requested web
page and a content adaptation service could adapt the
same web page to the user’s web access device.

Rule Engine
Since it may not be desirable to invoke installed service
modules for all user requests received by a service-enabled
intermediary, there must be a mechanism to trigger the
execution of service modules if certain conditions are met.

Alternatively, this decision could be left to the service
module. This would require, however, that all installed
service modules are invoked for every request/response
message passing through the intermediary. Obviously, this
approach would introduce a significant delay in requests
and responses for which no service modules should be ex-
ecuted. This is especially unacceptable if we assume that
only a small fraction of all web transactions require the
invocation of a service module.

Therefore, it is necessary for the parties for which service
modules may be executed to provide rules that specify the
conditions under which an incoming user request should
trigger the execution of a service module. The rule engine
component must also provide a secure interface through
which authorized rule authors or system administrators
can install, modify, and delete rules on the caching proxy.

Service Invocation Dispatcher
Once the rule engine has determined that a specific service
must be applied to a user request or server response, the
appropriate service module must be invoked. The invoked
service module must then be provided with an interface
to the corresponding request or response message stream
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Figure 1: Service Platform Architecture

so that it can modify it. These tasks are accomplished by
the service invocation dispatcher.

The rule engine notifies the service invocation dispatcher
whenever a service module must be invoked. Service mod-
ules, however, may not only be executed on the interme-
diary itself. In some cases, it makes more sense to use a
dedicated service execution server for this task. There-
fore, the service invocation dispatcher must differentiate
between local service modules and service modules on a
remote server.

The service invocation dispatcher also performs simple
security checks prior to the execution of a service module
in order to prevent unauthorized modifications of mes-
sages. A service module provided by cnn.com, for exam-
ple, should not be executed for a HTTP response from
disney.com because a service module by cnn.com is not
authorized to modify web objects other than those from
cnn.com.

The service invocation dispatcher should also log all
successful invocations of service modules in order to pro-
vide accounting and billing information to the providers
of value-added services so that that they can charge their
customers for each successful service invocation.

Local Service Execution Environment
The local service execution environment holds and exe-
cutes service modules on the caching proxy. It must also
be able to monitor and limit the use of resources by service
modules during their execution. Service modules should
not be able to significantly slow down the normal opera-
tion of a service-enabled intermediary. Therefore, resource
intensive service types, e.g. virus scanning, may not be
appropriate for the local service execution environment.
These services should rather be hosted by a remote ser-
vice execution server (see below).

The service execution environment must also provide a
secure interface through which authorized parties such as
content providers, access providers, and clients can install,
update, and delete service modules.

2.2 Remote Service Execution Server
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As mentioned before, the remote service execution server
is a separate server dedicated to hosting and executing ser-
vice modules that need more processing power and system
resources than are available on a caching proxy, for exam-
ple a virus scanning service.

Since the service modules on this remote server need to
modify the request/response messages which pass through
the intermediary, it is desirable to place the remote service
execution server as close to the intermediary as possible.

The communication between the caching proxy and a
remote service execution server requires a special protocol
which we refer to as “remote callout protocol” since its
primary purpose is to efficiently forward request/response
messages and information about the service to be exe-
cuted from the intermediary to the remote service execu-
tion server. A service-enabled intermediary may use this
protocol to communicate with any number of remote ser-
vice execution servers on which it wants to execute a ser-
vice module. This approach also increases the scalability
of the proposed service platform. If one service execution
server alone cannot handle all service requests, the service
platform operator may simply add another service execu-
tion server and configure the rules on the caching proxy
in a way that balances the load on both service execution
servers. This approach requires, however, that remote ser-
vice execution servers regularly report their current load
level to the caching proxy.

The hardware platform of a remote service execution
server should be optimized to support the fast execution
of service modules. Therefore, it may be desirable to build
specialized remote service execution servers which can ac-
celerate the execution of service modules. For example, a
Java virtual machine (JVM) built into the hardware of a
service execution server could increase the performance of
service modules written in Java.

Remote Callout Client/Server
The remote callout client is a component on the caching
proxy which talks to the remote callout server compo-
nent on the service execution server. They communicate
through the remote callout protocol in order to exchange
request/response messages that may be modified by ser-
vice modules on the remote service execution server. The
remote callout client also sends information about the type
of the forwarded message (request/response) and the ex-
pected behavior of the service module which is to be exe-
cuted on the remote service execution server.

Remote Service Execution Environment
The remote service execution environment is similar to
its local pendant on the intermediary with the exception
that in this execution environment the restrictions on the
available resources are not as strict. It is still desirable,
though, to enforce the usage of resources so that the avail-
able resources are shared equally among running service
modules.

3. SERVICE ACTIVATION RULES

3.1 Rule Engine Requirements

Performance is of paramount importance in an inter-
mediary like a caching proxy whose main purpose is to
accelerate the web access of its users. Even though a
service-enabled intermediary offers additional value-added
services to its users, this should not affect the performance
of the normal operation of the intermediary, at least not
significantly. It is not acceptable, for instance, that users
who do not want to use these additional services are pe-
nalized for using a service-enabled intermediary instead of
a regular intermediary.

The rule engine component of a service-enabled inter-
mediary ensures that service modules are invoked only for
those user requests or server responses that match certain
rules. These rules are provided by the entities for which
services can be executed. In the case of HTTP, these
include at least content providers, access providers, and
clients. Access providers are ISPs, enterprises, CDN ser-
vice providers, and other organizations operating network
edge devices like caching proxies, switches, and surrogates.

The rule engine component of a network edge service
platform should meet the following requirements:

• It should be optimized for performance so that user
requests for which no service modules are executed
are not slowed down.

• It should accept rules in a standardized format from
different external rule authors. This is necessary so
that the parties for which service modules can be ex-
ecuted have a means to control when service modules
are executed.

• Rules should allow rule authors to specify rule con-
ditions on a very fine grained level, for instance on
the message property level. This ensures that service
modules are not invoked in cases where this is not
absolutely necessary. For example, a virus scanning
service should only be invoked for web objects which
can possibly contain a virus.

• The rule engine should execute services according to
the intended service execution order of rule authors
but also be able to find a “sensible” service execution
order among rules from different rule authors.

• The rule engine should take the dynamic message
modifications of service modules into consideration.
For example, a content adaptation service may under
certain circumstances convert images from the JPEG
into the GIF graphics format. A subsequent service,
however, may not be able to process GIF images and
does therefore not have to be executed any more.

• The rule engine should allow for service modules to
be executed at different points within the round-trip
message flow. This may be necessary, for instance,
for services that only need to operate on messages
that are served from the origin server and not from
cache.

3.2 A Rule Speci£cation Language
In order to simplify and standardize the exchange of

rules between rule authors and service platforms, rules
should be specified in a standardized rule specification lan-
guage. [9] describes an XML rule specification language
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for this purpose. In a caching proxy rules can be processed
up to four times for each web transaction so that service
modules can modify messages at different points within
the message flow. The following section describes these
four rule processing and service execution points.

Rule Processing Points
Figure 2 shows the typical HTTP data flow between a
client, a caching proxy, and an origin server. The four
processing points (1-4) represent locations in the round
trip message flow where rules can be processed and service
modules can be executed. Note that the message flow may
skip points 2 and 3 after point 1 if the requested object
can be served from cache.

Client Origin
Server

Cache
1

4 3

2

Caching Proxy

HTTP
Request/Response
Message Flow

Rule Processing/
Service Execution
Point

Figure 2: Rule Processing/Service Execution
Points

Point 1 - Client Request A request from a client has
been received. A possible cache lookup has not yet
occurred.

Point 2 - Proxy Request The requested web object can-
not be served from the cache and the origin server is
about to be contacted for the HTTP resource.

Point 3 - Origin Server Response The response from
the origin server has been received. It has not yet
been stored in the cache.

Point 4 - Proxy Response The response from the cache
or the origin server is about to be sent back to the
client.

Depending on the service type, rules may be processed
and services may be executed at any of the four points
outlined in figure 2. A virus scanning service for instance
should be executed at point 3 in figure 2 in order to scan
all web objects for viruses before they can be stored in the
cache. A URL-based request filtering service on the other
hand should be executed at point 1 and an ad insertion
service will probably be executed at point 4.

We can imagine that in the future there will be a need
to have more processing points (at a finer granularity)
than the ones mentioned above. It is also important to
note that processing points are device-specific. A content-
aware switch, for instance, has different processing points
than a caching proxy.

Intermediary Rule Markup Language
The Intermediary Rule Markup Language (IRML) [9] al-
lows rule authors to specify rules for network edge services
in a standard format. It is important to create a standard
rule format that will be supported by vendors of service-
enabled caching proxies/surrogates so that rules can be

distributed to different service platforms owned by differ-
ent access providers in the same standard format.

The Intermediary Rule Markup Language also facili-
tates the exchange and discussion of network edge service
rules between and within groups of rule authors.

IRML is an application of XML. Thus, its syntax is
governed by the rules of the XML syntax as defined in [2],
and its grammar is specified by a DTD, or Document Type
Definition.

Valid and well-formed IRML documents consist of one
or more rule modules. Each rule module contains a set
of rules and information about the rule module provider.
Rule modules are provided by a content provider, an ac-
cess provider, or by a client (although usually indirectly
through an access provider). In the future, however, rule
modules may also be provided by other parties. On the
content provider side, for example, one could differentiate
between content hosters and content owners.

The rules contained in rule modules each consist of a
number of conditions and a number of consequent actions
that must be executed if the conditions are met. The
conditions within a rule refer to message properties in the
request or response of a given web transaction. They are
met if the property value matches the pattern specified in
the condition.

Order of Service Execution
The order in which service modules on the caching proxy
are executed may influence the final result of a web trans-
action. For example, an ad insertion service executed
against the result of a web page translation service may
produce a different result than a reverse execution order.

A natural processing order for rule modules would be
one that reflects the message flow from the user via the
intermediary to the origin server and back. According to
this order, up to three rule modules would have to be
processed by the rule engine of an intermediary per trans-
action. For incoming requests at points 1 and 2 in figure 2,
rule modules would be processed in the order: client rule
module, access provider rule module, content provider rule
module.

For outgoing responses at points 3 and 4, rule modules
would be process in the opposite order: content provider
rule module, access provider rule module, client rule mod-
ule.

Within a single rule module, the caching proxy must
process and execute all rules and actions in the order they
are specified in the rule module (both within ”property”
and ”rule” elements). If the rule processor determines
that an action must be executed, it must do so before
continuing the rule matching process since service modules
may modify message property values. This may influence
the result of subsequent pattern matches.

3.3 Rule Engine Architecture
Figure 3 illustrates the architecture of a complex rule en-

gine that can process rules specified in IRML. It consists
of a message dispatcher and parser component, a message
context, an XML parser, a rule module optimizer and val-
idator, a rule module repository, and a rule module pro-
cessor.
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XML Parser
IRML rule modules are XML documents which have to
be distributed to the network edge service platforms on
which they should be processed. The XML parser com-
ponent in the rule engine is invoked whenever a new rule
module is received. It parses the received IRML rule mod-
ule and creates an internal tree representation of the XML
elements and values. It then forwards this data structure
to the rule module optimizer.

Figure 3 also shows a secure interface on the XML parser
component. Although not a part of the rule engine itself,
this interface must be provided to rule authors so that they
can distribute their rule modules to network edge service
platforms.

Rule Module Optimizer/Validator
The rule module optimizer and validator component of
the rule engine pre-processes rule modules once they have
been parsed by the XML parser. This component can de-
tect inconsistencies in rule modules, for instance references
to non-existing service modules. It also optimizes the in-
ternal representation of rule modules so that they can be
processed more efficiently. The goal should be to mini-
mize the number of pattern matches when rule modules
are processed. Pattern matches, especially if regular ex-
pressions are involved, can be very expensive operations.
The rule module optimizer and validator is invoked once
for each new rule module and forwards the result of its
operation to the rule module repository.

Rule Module Repository
The rule module repository holds all current rule modules
in their optimized internal representation. The rule mod-
ules can be accessed by the rule processor when they need
to be processed and they are added to the repository by
the rule module optimizer. A new version of an existing
rule module replaces an older version when it is added to
the repository. The rule module owner, name, and version
information are used in order to manage these rule module
updates.

Message Dispatcher/Parser
A service-enabled network device is not limited to HTTP
applications. It may also support other message-based
protocols, for example RTSP [12]. The rule engine may
therefore require more than one message parser for each
supported protocol.

The message dispatcher is invoked once for each incom-
ing or outgoing message. The message dispatcher directs
the message to the approriate message parser. For ex-
ample, an incoming HTTP request is forwarded to the
HTTP message parser while an outgoing RTSP message
is forwarded to the RTSP message parser. The protocol-
specific message parser extracts name/value pairs from the
headers of the processed message. The property names
and values are then stored in the message context. This
procedure ensures an important performance requirement;
each message is parsed only once in a single pass. It is
necessary to parse all message headers because it is not
known in advance which property values will be modified
by service modules.

Message Context
The name/value pairs of the request and response mes-
sages of a specific web transaction are stored in the mes-
sage context. When the rule engine is invoked for the first
time (at processing point 1), the message context contains
only the request properties because a response message
has not yet been received by the service platform at this
point in the message roundtrip flow.

The message context offers an interface to other compo-
nents whereby message property values can be read and
modified. This interface is used by service modules which
are executed in the local service execution environment
and by the rule processor component (see below) in order
to access message property values. The message context
also contains the additional properties defined in IRML
which cannot be directly mapped to message headers, for
instance a user ID.

Rule Module Processor
The rule module processor is the core component of the
complex rule engine. The rule processor decides which ser-
vice modules are invoked at which points in the roundtrip
message flow of a web transaction. Depending on whether
a request is served from cache or the origin server, the rule
processor is invoked at two or four of the processing points
described in section 3.2.

When the rule processor is invoked, it retrieves appro-
priate rule modules from the rule module repository and
processes them in the correct order. Rules within rule
modules are matched in the order in which they are speci-
fied. Whenever a rule is matched, the rule processing stops
and the service invocation dispatcher is called in order to
execute the specified service module.

The rule processing continues after the execution of the
service module which may have modified message prop-
erty values. In the case of local service modules, these
modifications are made directly in the message context
through the message context API. The local service ex-
ecution environment provides an interface to these func-
tions. In the case of remote service modules, however, the
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modified message properties are contained in the remote
service execution server response. Therefore, the remote
callout client on the service platform parses the remote
callout response and updates the message context after
each remote callout transaction.

4. PROTOTYPE IMPLEMENTATION
Our prototype implementation of the proposed generic

service platform follows the architecture presented in the
previous sections, but only the core functionality is sup-
ported. The service platform prototype consists of a service-
enabled proxy with no caching capabilities and a remote
service execution server. iCAP [4] is used as the remote
callout protocol. Our prototype currently supports an
older version of iCAP, but we are currently updating the
prototype to support the latest iCAP version. The service
platform does not have a local service execution environ-
ment. All service modules are hosted by the remote service
execution server.

Our service platform is implemented on top of an exist-
ing non-caching proxy server for the FreeBSD operating
system. The open-source proxy server is written in C.
The non-caching proxy server was chosen for its simple
design which facilitated the implementation of the service
platform. Most of the proxy code could be reused, but
had to be modified in various parts. Because some of our
service prototypes require the caching of web objects, we
simulate a cache by storing web objects on a local web
server. Our prototype implementation contains a simple
rule engine and supports the remote execution of service
modules. These components are explained further in the
following sections.

4.1 Rule Engine Implementation
Our protoype implementation has a simpler rule engine

than the one described in section 3. The rule engine in our
prototype maintains a list of rules which are limited to the
following properties: index, status, client IP address, re-
quest URL, service module name, and iCAP mode. Table
1 shows a list of five example rules. The index property
controls the order in which the rules are processed and the
status property indicates whether a rule is active or inac-
tive. Only active rules are processed by the rule engine.

The client IP address specifies for which user(s) a par-
ticular rule must be processed. This field may also contain
a wildcard if a rule should be processed for all users. The
request URL field contains the URL that must match the
URL in a user request in order to trigger the execution of
a service. The request URL property can also be specified
in a pattern which may contain wildcards in each com-
ponent of the URL: the protocol, the domain name/port
number, and the request path. An example using all three
wildcards is given in rule number 1 in table 1.

The name of the service module that must be executed
if a rule matches is specified in the field ”service module”.
The ”iCAP mode”, finally, tells the rule engine which of
the two iCAP modes must be used for the specified service
module. The iCAP mode field may also contain the value
”negative”. In this case, the rule is to be interpreted as
a negative rule meaning that the specified actions must
not be executed if the rule matches. Since negative rules

always overrule positive rules, they allow for the exclu-
sion of certain values when they are used in combination
with wildcards in a corresponding positive rule. Exam-
ple rule 4, for instance, excludes the user whose client IP
address is 155.145.123.23 from the corresponding positive
rule number 3.

For each web transaction the rule engine processes all
rules and compiles a list of actions which is then passed
to the service invocation dispatcher to execute triggered
service modules in the specified order and iCAP modes.

Rule Con£guration
The rule sets on a caching proxy effectively control which
services are executed for which HTTP transactions. A
service-enabled caching proxy must therefore provide an
open rule configuration interface to entities for which ser-
vices may be executed. In our prototype implementation,
we have implemented a web interface for this purpose. It
allows authorized users to add, modify, and delete rules.
It is also possible to enable or disable rules and to change
the order of rules. We use basic HTTP authorization as
defined in [5, 6] to restrict the access to this web interface.

4.2 iCAP Implementation
Our iCAP client implementation is integrated into the

non-caching proxy server on top of which our service plat-
form is built. The proxy server is augmented by an iCAP
client which can compose, receive, and parse iCAP mes-
sages. The iCAP client uses existing, slightly adapted
functionality of the proxy server, for instance in order to
forward user requests to an iCAP server within an iCAP
request.

The iCAP server is also implemented in C and on the
FreeBSD operating system. An existing simple HTTP
server provides the skeleton for a remote service execution
server. The HTTP parser of the web server is modified so
that it can parse the additional iCAP-specific headers and
behave in accordance with the iCAP specification.

Service Execution Interface
In the existing prototype, service modules on the imple-
mented remote service execution interface are invoked through
a CGI interface on the iCAP server. We are currently in
the process of adding other standard web server interfaces
to the iCAP server such as FastCGI or the Java Servlet
API which offer better performance than the CGI inter-
face.

4.3 Service Prototype Implementations
We have implemented demo prototypes of four different

example services in order to test our service platform pro-
totype. All service prototypes have been implemented as
CGI programs for the remote service execution server and
are described in the following sections.

Language Translation Service
The translation service translates web pages to the user’s
preferred natural language with the help of a freely avail-
able language translation program (Altavista’s BabelFish).
The user’s preferred language is derived from the ”Accept-
Language” header [6]. The translation service translates
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Index Status Client IP Request URL Service iCAP Mode

1 Enabled * *://*/* reqfiltering Resp.Mod.
2 Enabled * http://yahoo.de/* adinsertion Resp.Mod.
3 Enabled * http://*/* translation Resp.Mod.
4 Enabled 155.145.123.23 http://*/* translation Negative

Table 1: Example Rules

a web page if there is a mismatch between the user’s pre-
ferred language and the document language.

Background Translation Service
The background translation service is similar to the lan-
guage translation service with the exception that it returns
the original web page to the user and prepares a transla-
tion for this page while the user views the original page.
After having viewed the original page the user can decide
whether he wants to see a translation for this page or not.
He can request the translation by clicking on a link which
the background translation service added to the original
page. The translation can then be served to the user very
quickly (possibly even from the intermediary’s cache if the
background translation service can pro-actively cache the
translation).

Web Access Control Service
This service restricts web access by analyzing requested
web content. All HTTP response messages are forwarded
to the web access control service if it is enabled. Once
invoked the service module scans the message for a list of
words. If the service module finds a ”forbidden word” in
the requested web page, it returns an HTML error mes-
sage to the iCAP client instead of the original web page.
The proxy then forwards this error message to the user.
Otherwise, the original HTTP message is returned to the
iCAP client and from there to the user.

Personalization Service
The personalization service reduces the web access latency
for personalized web pages. It satisfies certain user re-
quests by assembling personalized news pages on the net-
work edge rather than on the origin server. In this proto-
type, the user can customize a news page through a web
interface in which he can select the news categories he is
interested in. These settings are then saved in a cookie
variable on the user’s machine. Whenever this user re-
quests his personalized news page, the value of the pre-
viously set cookie variable is sent along with his request.
Thus, the personalization service module can obtain this
cookie variable from the user request and assemble the
news page accordingly.

5. PERFORMANCE EVALUATION

5.1 Rule Engine Performance
With this performance experiment we measure the ad-

ditional delay that is introduced by the rule engine for
requests that do not trigger any services. We therefore

measure the performance penalty a user has to pay for us-
ing a service-enabled intermediary instead of a standard
intermediary.

The test environment consists of our service-enabled
proxy implementation with the simple rule engine design
as described in section 4. There are 10 rules configured,
but none of them fire a service for our test request which
retrieves a 1.4 kbyte web page from a co-located local web
server in order to rule out any external effects on the mea-
surements. In order to obtain comparative data we have
also installed a copy of our prototype implementation on
the same server, but disabled the rule engine in that ver-
sion.

The performance metrics in this experiment are:

1. the time from the beginning of the web transaction
until a connection to the proxy is established (Con-
nect)

2. the time from the beginning of the transaction until
the first bit of the server response is received by the
client (First Response)

3. the time it takes to complete the web transaction
(Complete)

For the first test run in this experiment we configure
the service-enabled proxy in our browser and request the
sample web page. For the second test run we configure the
modified service proxy in which the rule engine is disabled.
We then request the same sample web page. The results
shown in table 2 are average values from 50 identical re-
quests with each proxy version. The variance between the
measured values was very low.

The results show that the ”connect” value is almost
identical with both proxies which is not surprising because
the rule engine has not even been invoked when this value
is measured. The ”first response” and ”complete” values
both show an additional delay of approximately only 0.5ms
for the proxy where the rule engine is enabled. These re-
sults demonstrate that the additional delay introduced by
the processing time of the simple rule engine is neglectable
considering that average web transactions take hundreds
of milliseconds.

It must be emphasized, however, that this value can
increase when the rule engine has to process hundreds of
rules instead of only ten rules. A more sophisticated rule
engine like the complex rule engine described in section 3
also may have to match more message properties per rule
than just the request URL and the client IP address and
may be invoked up to four times for each web transaction.
The additional delay of a more complex rule engine may
be offset, however, by a more efficient implementation.
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Connect First Response Complete

Standard Proxy 1.511 ms 16.167 ms 18.450 ms
Service-Enabled Proxy 1.519 ms 16.652 ms 18.907 ms

Table 2: Rule Engine Delay

Services Enabled Connect First Response Complete

None 5.810 ms 21.407 ms 27.846 ms
Background Translation 5.854 ms 137.506 ms 144.178 ms
Web Access Control 5.828 ms 134.777 ms 141.311 ms
Both 5.833 ms 246.275 ms 253.214 ms

No Proxy 3.698 ms 6.261 ms 10.725 ms

Table 3: Service Introduced Delay

6. SERVICE INTRODUCED DELAY
This performance experiment examines the additional

delay which is introduced by value-added services like the
background translation and the web access control service.
These services do not reduce the access latency of web
requests but modify or filter server responses as they pass
through the service-enabled intermediary.

The test environment consists of our service-enabled
proxy server and a co-located iCAP server on which the
background translation and web access control service mod-
ules are installed. The client is located in the same LAN
in order to reduce the influence of any network conges-
tions. In each test run, the client is configured to use
the proxy server and requests a very small web page (391
bytes) from a co-located web server. We want to mea-
sure the additional delay introduced by the background
translation and web access control service modules.

In the first test run, all rules are disabled and the client
receives the original web page. In the second test run,
the background translation service is enabled and adds a
translation image link to the web page before it is sent to
the client. It is important to note that the background
translation service does not translate the requested web
page or wait for its translation. Instead, the service only
makes a small modification to the original web page by
inserting a new HTML link.

The web access control service is enabled in the third
test run and scans the web page for illegal content. Both
service modules are enabled in the fourth test run which
means the original page is first modified by the background
translation service and then scanned by the web access
control service. The last test run was conducted with no
proxy configured in order to obtain some reference data.
The results shown in table 3 are average values from 50
identical requests in each test run. The performance met-
rics are the same as in the previous experiment. The vari-
ance between the measured values was low.

The results show that the ”connect” value is comparable
for all test runs with the exception of the last test run
where no proxy was used. The lower value for this test
run indicates that the web server can handle incoming
requests faster than the service-enabled proxy. This is
understandable because we have used a pre-forking web

server for these tests while the proxy server on top of which
we implemented our service platform spawns a new process
for each incoming request.

The additional delay introduced by the background trans-
lation and web access control services is for both services
approximately 110ms. This value can be determined if we
subtract the ”first response” or ”complete” value of the
first test run where no services are triggered from the cor-
responding values of the second or third test run. The re-
mainder equals the service delay introduced by the execu-
tion of each service since all three test runs were conducted
under otherwise equal conditions. An additional access
delay of 110ms is quite significant even though average
web transactions last hundreds of milliseconds. However,
the poor performance of the service executions can be ex-
plained partly by the limitations in the used prototype:
The implemented service modules use the CGI interface
which means that a new process is forked for each service
invocation. Also, the implemented older iCAP version did
not yet have support for chunked encoding and persistent
connections between iCAP client and server.

The fourth test run in which both services are executed
one after the other clearly shows that the service intro-
duced delay has doubled as well. This becomes obvious
if the ”first response” and ”complete” values of the first
run are subtracted from the corresponding values in the
fourth test run. The result, ca. 220ms, equals twice the
introduced delay from test runs 2 and 3. These numbers
suggest that a mechanism that allows for the execution of
multiple service modules during a single iCAP transaction
may decrease the service introduced delay. In the current
design, two service executions on the same iCAP server
require two separate iCAP transactions even when they
both operate in the same iCAP mode like the background
translation and web access control service.

7. RELATED WORK
The idea of intelligent networks is not new. In the

past, there have been different approaches to intelligent
networks. A lot of research has been done on ”active net-
works” [14, 13]. The active networks approach, however,
is not restricted to the edges of the network and also oper-
ates on lower levels of the protocol stack (i.e. on a packet-
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by-packet basis). Active networks have not yet received
widespread support.

Many different applications for network edge interme-
diaries, particularly for (caching) proxies, have already
been suggested and explored in past publications. For
example, in [3], Deng and Chi present a dynamic active
proxy for local web advertisement insertion and its bene-
fits. The concept of content transcoding or transformation
performed on caching proxies has been discussed for a long
time. More recently, the focus in content transformation
has shifted to the requirements of mobile web access. In [8]
and in [1], for example, the authors present a transcoding
proxy for mobile web browsing.

The just recently started IETF activity Open Pluggable
Edge Services (OPES) attempts to create a standardized
network edge service platform. The OPES initiative has
incorporated several Internet Drafts. Among them are the
Internet Draft that defines the Intermediary Rule Markup
Language (IRML) [9] and an Internet Draft which presents
service examples [10]. Another Internet Draft named ”Ex-
tensible Proxy Services Framework” [15] describes a net-
work edge service framework similar to the one explained
in this article but from a rather high-level perspective.
OPES is also considering to develop the current version of
iCAP [4] into a standardized remote callout protocol.

With the exception of the IETF activity OPES, related
work in this area appears to be focused on specific ap-
plications for network edge intermediaries. Some service
ideas like ad insertion or content transformation have been
explored and also applied before, but the notion of a stan-
dardized full-fledged, multi-purpose service platform at
the network edge is new.

8. CONCLUSION
In this article, we have presented the benefits of value-

added, intelligent services operating on intermediaries at
the edges of the Internet. We have presented a generic
service platform architecture with special emphasis on the
rule engine component. Our prototype implementation
of a simple service platform and four example services
proved the general concept proposed in this article and
also demonstrated that a variety of different service mod-
ules can be implemented on top of a generic service plat-
form with very little efforts. Our performance measure-
ments have shown potentials for future design and imple-
mentation improvements, but also confirmed that interme-
diary services and the additional components of a service-
enabled intermediary (in particular the rule engine) do
not necessarily introduce a significant additional delay to
web transactions passing through such a service-enabled
intermediary.

This article has also shown the required complexity of
a generic service platform. Open issues not addressed in
this article will therefore be subject of future work. Within
the rule engine component, for example, this includes the
rule module distribution process and the resolution of rule
conflicts.
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